Nievski Seminar.

The Construction of Light.

ii

Il grande pensatore é grande perché é capace di ascoltare l'opera degli altri "grandi" traendone ció che vi é di piú grande e trasformandolo in modo originale.

> Martin Heidegger Nietzsche

Chapter 1

Preliminaries test so good!

Let X be a topological space. $A \subseteq X$ is called *nowhere dense* if $int\overline{A} = \emptyset$. $A \subseteq X$ is called of *1th Baire category* is there exist a sequence $(A_n)_n$ of nowhere dense subsets of X such that

$$A = \bigcup_{n \in \omega} A_n.$$

 $A \subseteq X$ is called of 2th Baire category is A is not of 1th Baire category.

Definition 1.1. A topological space X is called a *Baire space* is every nonempty open of X is of 2th Baire category.

Remark 1.2. It is easy to see that

- 1. A is nowhere dense in $X \iff \overline{A}$ is nowhere dense.
- 2. A is of 1th Baire category in $X \iff \overline{A}$ is of 1th Baire category.
- 3. A closed C subset of a topological space X is 1th Baire category if and only if it is countable union of closed nowhere dense.

Proof. For 2. it is enough to note that $\overline{A} = A \cup FrA$, (where FrA is the boundary of A) and $intFrA = \emptyset$.

For 3. it is enough to note that if $(K_n)_n$ is a sequence of nowhere dense such that $C = \bigcup_n K_n$ then

$$C = (\bigcup_{n} \overline{K_n}) \cup FrC.$$

Proposition 1.3. Let (X, τ) be a topological space, A an open subset of X. Then A is 2th Baire category in X if and only if A is 2th Baire category in (A, τ) .

Proof. Easy.

Theorem 1.4. (Baire) Let (X, τ) be a topological space. Then the following are equivalent

- (i) (X, τ) ia a Baire space;
- (ii) for every family $(A_n)_n$ of open dense subsets of X, then $\bigcap_n A_n$ is dense in X.

Proof. $(i) \to (ii)$ Suppose that there exists $(A_n)_n$ of open dense subsets of X such that $\bigcap_n A_n$ is not dense in X. Therefore, there exists an open set A such that $A \cap \bigcap_n A_n = \emptyset$. Since, for each $n \in \omega$, A_n is dense, we have that

$$int(A \setminus A_n) = \emptyset$$

and $A \setminus A_n$ is closed. Then $A = \bigcup_n (A \setminus A_n)$ should be an open of 1th Baire category.

 $(ii) \rightarrow (i)$ Suppose there exists an open of 1th Baire category A. Hence there exists a sequence of nowhere dense $(K_n)_n$ such that

$$A = \bigcup_n K_n.$$

Then $A_n = X \setminus K_n$ is a sequence of open dense of X with $\bigcap_n A_n$ not dense in X (because otherwise we should have $A = \emptyset$).

Theorem 1.5. (Baire) Every complete metric space (X, d) is a Baire space.

Proof. Easy

Definition 1.6. Let (X, d) be a complete metric space. A function

$$f: X \longrightarrow \mathbb{R}$$

is called of 1th Baire category if there exists a sequence of continuous functions $(f_n)_n \subseteq C(X)$ such that

$$f(x) = \lim_{x \to \infty} f_n(x)$$
 for every $x \in X$.

We shall denote by $\mathcal{B}_1(X)$ the space of all Baire functions on X, equipped with the pointwise topology.

—

Some preliminaries

Let B an open ball of (X, d) and $f: X \longrightarrow \mathbb{R}$ be a function. Let

$$\omega_f(B) = \sup_{x \in B} f(x) - \inf_{x \in B} f(x)$$

 $\omega_f(B)$ is called the oscillation of f in B.

For any $x \in X$, we define

$$\omega_f(x) = \lim_{\delta \to 0} \omega_f(B(x,\delta)).$$

 $\omega_f(x)$ is called the oscillation of f in x.

It is clear that f is continuous at x_0 if and only if $\omega_f(x_0) = 0$. Moreover

$$D_f = \bigcup_n \{ x \in X : \ \omega_f(x) \ge \frac{1}{n} \}$$

coincides with the set of discontinuity points of f and every $\{x \in X : \omega_f(x) \ge \frac{1}{n}\}$ is closed. Then the discontinuity points of a function $f : X \longrightarrow \mathbb{R}$ is a F_{σ} set.

Theorem 1.7. (Baire) Let (X, d) be a complete metric space, $f : X \longrightarrow \mathbb{R}$ be a 1th Baire category function. Then f is continuous except a set of points of 1th Baire category.

Proof. It is enough to show that for every $\varepsilon > 0$

$$F = \{x \in X : \omega_f(x) \ge 5\varepsilon\}$$

is nowhere dense.

Let $(f_n)_n$ be a sequence of continuous functions such that $(f_n)_n$ converges pointwise to f. Let

$$E_n = \bigcap_{i,j \ge n} \{ x \in X : |f_i(x) - f_j(x)| \le \varepsilon \}.$$

Then

- (1) E_n is closed for all $n \in \omega$;
- (2) $E_n \subseteq E_{n+1}$ for all $n \in \omega$;
- (3) $\bigcup_n E_n = X.$

Since X is a Baire space, for each closed $C \subseteq X$, there exist an open subset A_C of X, $n_0 \in \omega$ such that

$$A_C \subseteq C \cap E_{n_0}.$$

That means

$$|f_i(x) - f_j(x)| \le \varepsilon \quad \forall x \in A_C, \ i, j \ge n_0.$$

For j = n and $i \to \infty$ we get

(1)
$$|f(x) - f_n(x)| \le \varepsilon \quad \forall x \in A_C.$$

Now, for each $x_0 \in A_C$, there exists $I(x_0) \subseteq A_C$ neighborhood of x_0 such that

(2)
$$|f_n(x) - f_n(x_0)| \le \varepsilon \quad \forall x \in I(x_0).$$

Putting (1) and (2) together, we have

$$|f(x) - f_n(x_0)| \le \varepsilon \quad \forall x \in I(x_0).$$

Therefore $\omega_f(x_0) \leq 4\varepsilon$. So no points of A_C belongs in F. But C was an arbitrary closed such that there exist an open A_C and

$$A_C \subseteq C \setminus F.$$

That implies F is nowhere dense

Using the fact that a F_{σ} set is of 1th Baire category if and only if its complement is dense, we get

Corollary 1.8. Let (X, d) be a complete metric space and $f : X \longrightarrow \mathbb{R}$. Then

 $f \in \mathcal{B}_1(X)$ if and only if f is continuous at a dense set of points.

Corollary 1.9. (*R. Baire, 1899*) Let (X, d) be a complete metric space. A function f on X is 1th Baire function if and only if its restriction to every closed subset M of X has a point of continuity.

Proof. If $D_M = D_f \cap M$ is the set of discontinuity points of f in M, we have that D_M is a F_σ set of 1th Baire category of M.

1.0.1 The spaces $C_p(X)$ and $\mathcal{B}_1(X)$

Definition 1.10. For a compact topological space X, we denote by C(X) the space of all continuous real-valued functions on X. On such space, we consider

(i) the *norm topology*: the topology defined by the norm

$$\|f\| = \sup_{x \in X} |f(x)|;$$

(ii) the *pointwise topology*: obtained by considering C(X) as a subspace of \mathbb{R}^X , the space of all real-valued functions equipped with the product topology. This space is denoted by $C_p(X)$ (X in such case could be a Polish space). A neighborhood of a function f is determined by finite sequence x_1, \ldots, x_n of points in X and $\varepsilon > 0$ by

$$U_f(x_1,\ldots,x_n,\varepsilon) = \{g \in C_p(X) : |g(x_i) - f(x_i)| < \varepsilon, \forall i = 1,\ldots,n\}$$

Definition 1.11. A space X is *countably compact* iff every sequence in X as a cluster point in X.

For separable metric space this notion is equivalent to compactness, but in general is weaker.

Theorem 1.12. (Grothendieck) Let X be a compact space and $Y \subseteq C_p(X)$ a closed subspace. Then Y is compact if and only if it is countably compact.

Proof. Assume Y countably compact. Then, for every $x \in X$ there is a positive real number M_x such that $|f(x)| \leq M_x$ for every $f \in Y$. Since \overline{Y} is a closed subset of $\prod_{x \in X} [-M_x, M_x]$, we have that \overline{Y} taken inside \mathbb{R}^X is compact in \mathbb{R}^X .

Claim \overline{Y} lies in $C_p(X)$.

Suppose there exists a discontinuous function $f \in \overline{Y}$. Fix $\varepsilon > 0$ and $y \in X$ such that the set $Z = X \setminus f^{-1}(f(y) - \varepsilon, f(y) + \varepsilon)$ accumulates to y. By induction, we built sequences $\{U_n\}$ of open sets containing $y, (x_n)_n \subseteq Z$ and $(f_n)_n \subseteq Y$ such that

- (0) $\overline{U_{n+1}} \subseteq U_n$, for all n;
- (1) $|f_n(x) f_n(y)| < \frac{\varepsilon}{2^n}$ for all $x \in U_n$;
- (2) $x_n \in U_n \cap Z$, for all n;
- (3) $|f_{n+1}(x_i) f(y)| > \frac{\varepsilon}{2}$, for $i = 1, \dots, n$;

(4) $|f_n(y) - f(y)| < \frac{\varepsilon}{2^n}$.

Assume that U_i, f_i and x_i are chosen for all $i \leq n$. Then $U_f(x_1, \ldots, x_n, y, \frac{\varepsilon}{2}) \cap Y$ is not empty, so pick f_{n+1} in this set. Then

$$|f_{n+1}(x_i) - f(y)| \ge |f(x_i) - f(y)| - |f_{n+1}(x_i) - f(x_i)| > \frac{\varepsilon}{2}.$$

Therefore f_{n+1} satisfy (3). Since f_{n+1} is continuous at y we can pick an open neighborhood U_{n+1} of y such that $\overline{U_{n+1}} \subseteq U_n$ and (1) is satisfied. Finally, for the definition of Z, we can pick $x_{n+1} \in U_{n+1} \cap Z$ to satisfies (1).

Let x_{∞} an accumulation point of $(x_n)_n$; in particular $x_{\infty} \in \bigcap_n \overline{U_n}$. Let $S = (x_n)_n \cup \{x_{\infty}\}$ and define

$$\Phi: C_p(X) \longrightarrow C_p(S)$$

by

$$\Phi(g) = g|_S$$

Then Φ is continuous. Therefore $F = \Phi(Y)$ is a compact in $C_p(S) \subseteq \mathbb{R}^S$ a separable metric space. Since F is countably compact, we have that F is compact. Let g be an accumulation point of $\{f_n|_S\}_n$. By the construction, we have that $g(x_{\infty})$ is not in the closure of $\{g(x_n)\}_n$. Then g is not continuous at x_{∞} . Namely a contradiction.

Let us recall that, if X is a Banach space, for each $x^* \in X^*$ let $D_{x^*} = \mathbb{K}$, and let $\mathcal{D} = \prod_{x^* \in X^*} D_{x^*}$. Let $T: X \longrightarrow \mathcal{D}$ the map defined by

$$T(x) = (x^*(x))_{x^* \in X^*}.$$

Then T is one-to-one embedding of X into \mathcal{D} . The weak topology on X is defined as the topology induced by \mathcal{D} via the map T. Similarly, we can define on X^* a weaker topology, called the weak* topology, which is induced by $\widetilde{\mathcal{D}} = \prod_{x \in X} D_x$, where $D_x = \mathbb{K}$, for each $x \in X$. It is classical, and easy to prove, that the closed unit ball B_{X^*} of X^* is weak* compact (in the literature such a result is called the *Banach-Alaoglu-Boubaki*).

Remark 1.13. Grothendieck's theorem in particular implies:

A sequence $(f_n)_n$ in $(C(X), \|\cdot\|)$ is weakly convergent to a function f if and only if f_n converges pointwise to f.

Definition 1.14. A regular Hausdorff space X is called **angelic space** if

(i) every relatively countably compact is relatively compact;

(ii) for every relatively compact A of X, then $x \in \overline{A}$ if and only if there exists $(x_n)_n \subseteq A$ converging to x.

We notice that even the space $c_0 = C(\alpha \mathbb{N})$, where $\alpha \omega$ is the Alexandroff's compactification of the natural numbers, is not an angelic space.

The next result, via Grothendieck's theorem, tell us that the space $C_p(X)$ is angelic.

Theorem 1.15. (Eberlain) Let X be a compact space and Y be a compact subset of $C_p(X)$. Then for every $A \subseteq Y$, if f is in the closure \overline{A} of A then there is $(f_n)_n \subseteq A$ converging to f.

The proof follows by the next two lemmas.

Lemma 1.16. Under the assumption of the theorem above, there is a countable $A_0 \subseteq A$ such that $f \in \overline{A_0}$

Proof. Let us assume that $f = \theta_{C_p(X)}$. Fix $n \in \omega$ and $x = (x_1, \ldots, x_n) \in X^n$. Pick $f_x \in U_\theta(x_1, \ldots, x_n, \frac{1}{n}) \cap A$ and let

$$W_x = \prod_{i=1}^n f_x^{-1}(-\frac{1}{n}, \frac{1}{n}).$$

 W_x is open in X^n . Since X^n is compact, there exists a finite set $F_n \subseteq X^n$ such that

$$\bigcup_{x \in F_n} W_x = X^n$$

Let

$$A_0 = \{ f_x : x \in F_n, n \in \omega \}.$$

 A_0 is clearly countable. We need to show that $\theta_{C_p(X)} \in A_0$.

Given $\varepsilon > 0$ and x_1, \ldots, x_n . Increasing *n* if needed, we can assume that $\frac{1}{n} \leq \varepsilon$. We need to find $g \in A_0$ such that, for $i = 1, \ldots, n$, $|g(x_i)| < \frac{1}{n}$. Choose $y \in F_n$ such that $x = (x_1, \ldots, x_n) \in W_y$. then $g = f_y$ works. Indeed, follows form $x_i \in f_y^{-1}(-\frac{1}{n}, \frac{1}{n})$, for $1 \leq i \leq n$, that $|f_y(x_i)| < \frac{1}{n}$.

Lemma 1.17. For every countable $A_0 \subseteq Y$, the closure $\overline{A_0}$ is second countable.

Proof. Let $\Phi: X \longrightarrow \mathbb{R}^{A_0}$ be defined by

$$\Phi(x) = (f(x))_{x \in A_0}.$$

Then Φ is a continuous map. Therefore, $Z = \Phi(X) \subseteq \mathbb{R}^{A_0}$ is a compact second countable space. Let us define

$$\Psi: C_p(Z) \longrightarrow C_p(X)$$

by

 $\Psi(f) = f \circ \Phi.$

Step 1 Ψ is a homomorphism embedding.

Clearly Ψ is one-to-one. To see that Ψ is continuous note that

$$\Psi^{-1}(U_{\Phi(f)}(x_1,\ldots,x_n,\varepsilon)) = U_f(\Phi(x_1),\ldots,\Phi(x_n),\varepsilon).$$

On the other hand, for every basic open set $U_f(z_1, \ldots, z_n, \varepsilon)$ of $C_p(Z)$,

$$\Psi(U_f(z_1,\ldots,z_n,\varepsilon)) = U_{\Phi(f)}(x_1,\ldots,x_n,\varepsilon) \cap \Psi(C_p(Z))$$

for every choice of $x_i \in \Phi^{-1}(z_i)$, i = 1, ..., n. Thus, the inverse of Ψ is also continuous.

Step 2 The range of Ψ is closed in $C_p(X)$.

Take g in the closure of $\Psi(C_p(Z))$ inside $C_p(X)$. For every $z \in Z$, the function g is constant on $\Phi^{-1}(z)$. Otherwise, if for some $x_1, x_2 \in \Phi^{-1}(z)$ the number $\varepsilon = |g(x_1) - g(x_2)|$ is positive, then $U_g(x_1, x_2, \frac{\varepsilon}{4})$ would be a neighborhood of g which doesn't intersect the range of Ψ .

Indeed, if $\tilde{f} \in U_g(x_1, x_2, \frac{\varepsilon}{4}) \cap Range\Psi$, then $\tilde{f} = \Psi(f_1)$. But

$$\varepsilon = |g(x_1) - g(x_2)| \le |g(x_1) - \Psi(f_1(x_1))| + |\Psi(f_1(x_1)) - \Psi(f_1(x_2))| + |g(x_2) - \Psi(f_1(x_2))| = |g(x_1) - f_1(z)| + 0 + |g(x_2) - f_1(z)|.$$

Therefore, either $|g(x_1) - f_1(z)| \ge \frac{\varepsilon}{2}$ or $|g(x_1) - f_1(z)| \ge \frac{\varepsilon}{2}$.

But $|g(x_i) - f_1(z)| = |g(x_i) - \Psi(\widetilde{f}(x_i))|$. That implies $\widetilde{f} \notin U_g(x_1, x_2, \frac{\varepsilon}{4})$.

It follows that there is a function $f: Z \longrightarrow \mathbb{R}$ such that $g = f \circ \Phi$. We need to show that f is continuous.

Let τ the maximal topology on Z for which Φ is continuous. Note that f is τ continuous because

$$\Phi^{-1}(f^{-1}(I)) = g^{-1}(I)$$

is open in X for every rational interval I. Since (Z, τ) is continuous image under Φ , it is compact. But the original topology σ of Z (inherited from \mathbb{R}^{A_0})

is also compact Hausdorff. Since $\sigma \subseteq \tau$ we have that $\sigma = \tau$. This shows that f is continuous. This proves the claim.

It follows that our set A_0 is a subset of the compact set

 $Y \cap \Psi(C_p(Z))$

so its closure $\overline{A_0}$ is a compact subset of the range of Ψ . Since Ψ is a homomorphism it is enough to show that compact subsets of $C_p(Z)$ are second countable. Recall that a compact space is second countable if and only if there is a countable family of continuous functions which separates its points. Let $D \subseteq Z$ a countable dense of Z. For each $d \in D$ let us consider

$$p_d: C_p(Z) \longrightarrow \mathbb{R}$$

given by

 $p_d(f) = f(d)$

It is clear that $(p_d)_p$ is a sequence of continuous functions separating the points of Z.

Definition 1.18. Let Y be a topological space and f a real-valued function defined on Y. We say that f satisfies the *Discontinuity Criterion* provided there is a non-empty subset $L \subseteq Y$, $r, \delta \in \mathbb{R}$ with $\delta > 0$ so that

for every non-empty open $U \subseteq L$ (open in L)

$$\exists y, z \in U: \begin{cases} f(y) > r + \delta \\ f(z) < r \end{cases}$$

Proposition 1.19. Let Y and f as above and suppose f satisfies the Discontinuity Criterion.

Then there is a closed non-empty subset K of Y such that $f|_K$ has no point of continuity relative to the topological space K.

Suppose moreover that there is a uniformly bounded family F of continuous real-valued functions on Y so that f is in the pointwise closure of F. Then F contains a sequence equivalent in the sup-norm to the usual ℓ_1 -basis.

Proof. Let L, r, δ be chosen as in the above definition. Then $K = \overline{L}$ is the desired closed subset.

Now, let us suppose that $f|_L$ is in the pointwise closure of $F|_L$. That means

 $\forall \varepsilon > 0 \; \exists l_1, \dots, l_n \in L, \; g \in F \; : \; |g(l_i) - f(l_i)| < \varepsilon, \quad i = 1, \dots n.$

Step 1 There exists $(g_n)_n \subseteq F$ such that, if $A_n = \{x \in L : g_n(x) > r + \delta\}$ and $B_n = \{x \in L : g_n(x) < r\}$, then

- (1) $A_n \cap B_n = \emptyset$ for each $n \in \omega$;
- (2) for every finite subsets $F_1, F_2 \subseteq \omega$ with $F_1 \cap F_2 = \emptyset$ we have

$$\left(\bigcap_{n\in F_1} A_n\right)\cap \left(\bigcap_{n\in F_2} B_n\right)\neq \emptyset.$$

For sake of notation, let us denote by $A_i = A_i$ and $-A_i = B_i$.

Indeed, by hypothesis, choose $y_1, y_2 \in L$ such that $f(y_1) > r + \delta$, $f(y_2) < r$. Since f is in the pointwise closure of F, there must exists $g_1 \in F$ such that

$$g_1(y_1) > r + \delta, \ g_1(y_2) < r.$$

Trivially, we have (1) and (2) above.

Suppose $g_1, \ldots, g_n \in F$ have been chosen so that

$$\bigcap_{i=1}^{n-1} \epsilon_i A_i \neq \emptyset$$

for each choice of signs $\epsilon = (\epsilon_1, \ldots, \epsilon_{n-1})$, with $\epsilon_i = \pm 1$.

Since $\bigcap_{i=1}^{n-1} \epsilon_i A_i$ is a non-empty open set in L, by hypothesis we can pick $y_1^{\epsilon}, y_2^{\epsilon} \in \bigcap_{i=1}^{n-1} \epsilon_i A_i$ such that

$$f(y_1^{\epsilon}) > r + \delta, \quad f(y_2^{\epsilon}) < r.$$

Again, we can choose $g_n \in F$ such that

$$g_n(y_1^{\epsilon}) > r + \delta, \quad g_n(y_2^{\epsilon}) < r,$$

for all 2^{n-1} choices of ϵ .

It follows that $(g_n)_n$ satisfies the Step 1.

Step 2 $(g_n)_n$ is equivalent (in the sup norm) to the usual ℓ_1 basis.

By multiplying all g_n 's by -1 we can assume $r + \delta > 0$. Let $(c_i)_i$ be a sequence of scalars only finite many c_i 's non zero so that $\sum_i |c_i| = 1$.

It is enough to show that there is an $s \in L$ such that

$$|\sum_{i} c_i g_i(s)| \ge \frac{\delta}{2}.$$

Indeed, by homogeneity we get

$$\frac{\delta}{2}\sum_{i}|c_{i}| \leq \|\sum_{i}c_{i}g_{i}\| \leq \sum_{i}|c_{i}|,$$

which means that $(g_n)_n$ is equivalent to the ℓ_1 basis.

Let $G = \{i \in \omega : c_i > 0\}$ and $B = \{i \in \omega : c_i < 0\}$. By (2) of Step 1, we can choose

$$(*) \qquad x \in \left(\bigcap_{i \in G} A_i\right) \cap \left(\bigcap_{i \in B} B_i\right), \quad y \in \left(\bigcap_{i \in B} A_i\right) \cap \left(\bigcap_{i \in G} B_i\right).$$

If we suppose first $r \ge 0$, setting $B' = \{i \in B : g_i(x) > 0\}$ then

$$\sum_{i \in B} c_i g_i(x) \ge \sum_{i \in B'} c_i g_i(x) > -r \sum_{i \in B'} |c_i| \ge \sum_{i \in B} |c_i|(-r).$$

Similarly

$$-\sum_{i\in B}c_ig_i(y) \ge \sum_{i\in B}|c_i|(-r)$$

For (*) then we have

(a)
$$\sum_{i} c_i g_i(x) \ge \sum_{i \in G} |c_i| (\delta + r) + \sum_{i \in B} |c_i| (-r)$$

and

(b)
$$-\sum_{i} c_{i}g_{i}(y) \ge \sum_{i\in B} |c_{i}|(\delta+r) + \sum_{i\in G} |c_{i}|(-r)|$$

Actually, the inequality (a) and (b) hold for r < 0 too.

Therefore

$$\sum_{i} |c_i|g_i(x) - \sum_{i} |c_i|g_i(y) \ge \sum_{i \in G} |c_i|(\delta + r) + \sum_{i \in B} |c_i|(-r) + \sum_{i \in B} |c_i|(\delta + r) + \sum_{i \in B} |c_i|(-r) + \sum_{i \in G} |c_i|(\delta + r) + \sum_{i \in B} |c_i|(\delta + r) + \sum_{i \in B}$$

That implies

either
$$\sum_{i} |c_i| g_i(x) \ge \frac{\delta}{2}$$
 or $-\sum_{i} |c_i| g_i(y) \ge \frac{\delta}{2}$.

In any case, s = x or s = y satisfies the conclusion.

Lemma 1.20. Let X be a Polish space and let $(f_n)_n$ be a pointwise bounded sequence of real valued functions on X such that $(f_n)_n$ has no pointwise convergent subsequence.

Then, there are $N' \subseteq \omega$ and real numbers r, δ with $\delta > 0$ so that for every $M \subseteq N'$ there is $x \in X$ such that

(1)
$$f_m(x) > r + \delta$$
 for infinitely many $m \in M$

and

$$f_m(x) < r$$
 for infinitely many $m \in M$.

Proof. Suppose not. Let us enumerate $\mathbb{Q} \times \mathbb{Q}$ by $\{(r_n, \delta_n)\}_n$.

Let $M_0 = \omega$. We now choose infinite sets $M_0 \supseteq M_1 \supseteq \ldots \supseteq M_n \supseteq \ldots$ as follows: suppose M_{n-1} has been already chosen, since (1) above is false, then there exists $M_n \subseteq M_{n-1}$ so that every $x \in X$ fails to satisfies (1) for M_n and (r_n, δ_n) .

By a diagonalization argument, we can choose $M \subseteq_a M_n \ \forall n \in \omega$ such that for every $x \in X$ does not exist $(r, \delta) \in \mathbb{Q} \times \mathbb{Q}$ satisfying (1).

But $(f_n)_{n \in M}$ is pointwise bounded and non converging sequence, then there exists $x \in X$ such that

$$\liminf_{m \in M} f_m(x) \leq \limsup_{m \in M} f_m(x).$$

Now, simply choose rational numbers r, δ with $\delta > 0$ such that

$$\liminf_{m \in M} f_m(x) < r < r + \delta < \limsup_{m \in M} f_m(x).$$

Therefore x satisfies (1) with M r and δ . Namely a contradiction.

Theorem 1.21. Let X be a Polish space and let $(f_n)_n$ be a pointwise bounded sequence of real valued functions on X, such that $(f_n)_n$ has no pointwise convergent subsequence. Then there exists a non empty subset $L \subseteq X$ and a subsequence $(f_{n_k})_k$ which is pointwise convergent on L so that the limit function f satisfies the Discontinuity Criterion.

Consequently, $(f_{n_k})_k$ has no 1th Baire class cluster point in the topology of pointwise convergence.

Proof. Let N', r, δ as the lemma above.

For every $M \subseteq N'$ let K(M) the closure of the set of all $x \in X$ satisfying (1) of the previous lemma. We have

(a) K(M) is a non empty closed set of X, for each $M \subseteq N'$;

(b)
$$K(M_1) \subseteq K(M_2)$$
 whenever $M_1 \subseteq_a M_2 \subseteq N'$

Recall that in a Polish space there is no family $\{K_{\alpha}, \alpha \in \omega_1\}$ of closed subset, indexed by the first uncountable ordinal ω_1 , with $K_{\alpha} \subsetneq K_{\beta}$ for all $\beta < \alpha < \omega_1$.

Therefore, there exists $M \subseteq N'$ so that

$$K(M') = K(M)$$
 for all $M' \subseteq_a M$.

Indeed, otherwise by a diagonalization argument we could construct $(K(M_{\alpha}))_{\alpha < \omega_1}$ so that $K(M_{\alpha}) \subsetneq K(M_{\beta})$ for all $\beta < \alpha < \omega_1$.

Claim $\forall M' \subseteq_a M$, for all open $U \subseteq K(M)$, there are $M'' \subseteq_a M', y, z \in U$ such that

(3)
$$\lim_{n \in M''} f_n(y) \ge r + \delta$$

and

$$\lim_{n \in M''} f_n(z) \le r$$

Indeed, fix $M' \subseteq M$. Then K(M') = K(M). By definition, there exists $y \in U : f_n(y) > r + \delta$ for infinitely many $n \in M'$. Now choose a subset $M_1 \subseteq_a M'$ such that $(f_n(y))_{n \in M_1}$ converges.

By definition, there exists $z \in U$: $f_n(z) < r$ for infinitely many $n \in M_1$. Finally, choose $M_2 \subseteq_a M_1$ so that $(f_n(z))_{n \in M_2}$ converges.

Now, let $(U_n)_n$ be a base of open sets of K(M). Therefore, we can have $(M_n)_n$ a sequence of infinite sets of ω with

 $M_{n+1} \subseteq_a M_n$ for all $n \in \omega$,

 $z_n, y_n \in U_n$ for all $n \in \omega$,

such that the (3) of the claim holds.

As always, by diagonalization argument, let us consider $Q \subseteq_a M_n \forall n \in \omega$ and let $L = \{y_n, z_n : n \in \omega\}$. Notice that L is dense in K(M).

Let us define

$$f(x) = \lim_{n \in Q} f_n(x) \quad \forall x \in L.$$

Consequently, $(f_{n_k})_k = (f_n)_{n \in Q}$, L and f satisfy the conclusion of the theorem.

Theorem 1.22. (H. Rosenthal)

Let X be a Polish space and let F be a subset of $\mathcal{B}_1(X)$. The following are equivalents

- (1) F is relatively compact;
- (2) F is relatively countably compact;
- (3) F is relatively sequentially compact.

Moreover, suppose F satisfies the equivalence, then

- (a) every function in the closure of F is in the closure of a countable subset of F;
- (b) if F is uniformly bounded and $(f_{\alpha})_{\alpha}$ is a convergent net of F with limit f, then

 $\int f_{\alpha} d\mu \longrightarrow \int f d\mu$ for all signed Borel measure μ on X.

Proof. $(2) \Rightarrow (3)$ By hypothesis, F has to be pointwise bounded. Then (3) holds by the previous theorem.

 $(2) \Rightarrow (1)$ Suppose (1) fails. For (2), F is pointwise bounded; hence the pointwise closure of F in $X^{\mathbb{R}}$ is compact by Tychonoff's theorem. Therefore, there must exists a non 1th Baire class function f in the pointwise closure of F. By Baire's theorem 1.9, there exists a closed non empty subset K of X such that $f|_K$ has no point of continuity relative to K.

Claim: f satisfies the Discontinuity Criterion.

Indeed, for each $n \in \omega$ let

 $A_n = \{x \in K : \text{ for every neighborhood } U \text{ of } x \exists y, z \in U : f(y) - f(z) > \frac{1}{n} \}$

Since $f|_K$ has no point of continuity, we have that

$$K = \bigcup_{n \in \omega} A_n.$$

By the Baire category's theorem 1.4, there is a n_0 such that A_{n_0} has non empty interior U_0 . Let $K_0 = \overline{U_0}$ and $\delta = \frac{1}{n_0}$. We have that, for all $U \subseteq K_0$ open, $U \cap U_0$ is open in K_0 . Then $\exists y, z \in U : f(y) - f(z) > \delta$.

Let $(r_n)_n = \mathbb{Q}$ and for $n \in \omega$ let us define

$$B_n = \{ x \in K_0 : \text{ for every neighborhood } U \text{ of } x \exists y, z \in U \cap K_0 :$$
$$f(z) < r_n$$
$$f(y) > r_n + \delta \}$$

Then

$$K_0 = \bigcup_{n \in \omega} B_n$$

Again, by the Baire category's theorem 1.4, $\exists n_1 \in \omega$ such that B_{n_1} has non empty interior V. Let us consider $L = \overline{V}$ and $r = r_{n_1}$. Then, we have that f satisfies the Discontinuity Criterion for L, r, δ .

Let $(U_n)_n$ be a base of open sets in L. For each $n \in \omega$ choose $y_n, z_n \in U_n$ such that

$$f(y_n) > r + \delta \qquad f(z_n) < r.$$

Let $Q = \{y_n, z_n : n \in \omega\}$. Since f is in the pointwise closure of F and Q is a countable set, there must exists a sequence $(f_n)_n \subseteq F$ such that

$$f_n(q) \xrightarrow{n \to \infty} f(q) \qquad \forall q \in Q$$

But Q is dense in L, it follows that $f|_Q$ satisfies the Discontinuity Criterion. Moreover, it is clear that if g is a cluster point of $(f_n)_n$ then $g|_Q = f|_Q$. Therefore, g has no point of continuity in \overline{Q} . Thus $(f_n)_n$ has no 1th Baire class cluster point. That means (2) fails.

Since $(1) \Rightarrow (2)$ and $(3) \Rightarrow (2)$ are trivial, we have that the equivalence of (1) - (2) - (3).

To show $(2) \Rightarrow (a)$ we need the following

Lemma 1.23. Let S be a pointwise relatively compact of $\mathcal{B}_1(X)$, $0 \in \overline{S}$, $s(x) \ge 0$ for all $s \in S$, $x \in X$.

Then, $\forall \delta > 0 \ \exists H \subseteq S$ a countable set such that

$$\inf_{h \in H} h(x) < \delta \qquad \forall x \in X.$$

Proof. Suppose not. Then $\forall H \subseteq S \exists \delta > 0$ such that

$$K(H) = \{ x \in X : h(x) \ge \delta \ \forall h \in H \}$$

is non empty. Then we have

$$K(H_1) \subseteq K(H_2)$$
 whenever $H_2 \subseteq H_1$.

By transfinite induction, we construct $(D_{\alpha})_{\alpha < \omega_1}$, $((s_n^{\alpha})_{n \in \omega})_{\alpha < \omega_1} \subseteq S$ and $(H_{\alpha})_{\alpha < \omega_1}$ so that

- (i) $H_{\alpha} \subseteq H_{\beta}$ for $\alpha < \beta < \omega_1$;
- (ii) D_{α} is dense in $\overline{K(H_{\alpha})}$ and D_{α} countable;

- (iii) $\lim_{n \to \infty} s_n^{\alpha}(x) = 0$ for all $x \in D_{\alpha}$;
- (iv) $H_{\alpha+1} = H_{\alpha} \cup \{s_n^{\alpha}, n \in \omega\}.$

Let H_0 be arbitrary. Chosen H_{α} and D_{α} , we can consider $((s_n^{\alpha})_{n \in \omega})_{\alpha < \omega_1} \subseteq S$ as in *(iii)* by a diagonalization argument and using the fact that $0 \in \overline{S}$.

Let us consider $H_{\alpha+1}$ as in (*iv*). If β is a limit ordinal, put $H_{\beta} = \bigcup_{\alpha < \beta} H_{\alpha}$. the countability of β and the countability of every H_{α} insures that H_{β} is countable.

Then there must exists $\alpha < \omega_1$ such that $K(H_\alpha) = K(H_{\alpha+1})$.

Let f be any cluster point of $((s_n^{\alpha})_{n \in \omega})_{\alpha < \omega_1}$. Then f must vanish on D_{α} .

$$\forall x \in K(H_{\alpha+1}), \ s_n^{\alpha}(x) \ge \delta \text{ for all } n \in \omega \ \Rightarrow \ f(x) \ge \delta.$$

Since $K(H_{\alpha+1})$ and D_{α} are dense in $\overline{K(H_{\alpha})}$ we have

f satisfies the Discontinuity Criterion

$$\Rightarrow f \notin \mathcal{B}_1(X)$$
. A contradiction.

Proof. of $(2) \Rightarrow (a)$ $\forall m \in \omega$ let

$$\phi_m: \mathcal{B}_1(X) \longrightarrow \mathcal{B}_1(X^m)$$

define by

$$\phi_m(f)(x_1, \dots, x_m) = |f(x_1)| + \dots + |f(x_m)|.$$

Let $g \in \overline{F}$. WLOG we can suppose g = 0 (otherwise consider $\{f - g : f \in F\}$). Therefore, ϕ_m is a continuous map and $\phi_m(0) = 0$. Then $\phi_m(F)$ is relatively compact of $\mathcal{B}_1(X^m)$ and $0 \in \overline{\phi_m(F)}$. By Lemma 1.23, there must exists H_m a countable set of F such that

$$\frac{1}{m} > \inf\{(\phi_m h)(y), h \in H_m\} \qquad \forall y \in X^m$$
$$\Rightarrow 0 \in \overline{\bigcup_{m \in \omega} H_m}.$$

To show $(1) \Rightarrow (b)$ we shall need of the following

Lemma 1.24. Let X be a compact Hausdorff space and let us denote by K the unit ball of M(X) (the space of all bounded signed Borel regular measures on X) endowed with the weak^{*} topology relative to C(X).

Let us define

$$T: bd - \mathcal{B}_1(X) \longrightarrow K^{\mathbb{R}}$$

by

$$Tf(\mu) = \int_X f \ d\mu,$$

where we are denoting by $bd - \mathcal{B}_1(X)$ the space of all 1th Baire class which are bounded.

Then the range of T is a closed subset of $bd - \mathcal{B}_1(K)$.

Proof. It enough to show that $T(bd - \mathcal{B}_1(X))$ consists of all functions in $bd - \mathcal{B}_1(K)$ which are antisymmetric and affine.

Obvious all functions in $T(bd - \mathcal{B}_1(X))$ are antisymmetric and affine. Let us suppose $f \in \mathcal{B}_1(K)$ bounded, antisymmetric and affine. Then there exists an element $\tilde{f} \in M(X)^* = C(X)^{**}$ such that

$$\widetilde{f}|_K = f.$$

Claim: \tilde{f} is of 1th Baire class $\iff \tilde{f}|_{K} = f$ is of 1th Baire class.

Suppose we have already proved the Claim, then $\tilde{f}|_K = f$ is of 1th Baire class. Therefore, $\tilde{f} \in M(X)^*$ is of 1th Baire class.

Then there exists $(f_n)_n \subseteq C(K)$ such that

$$\lim_{n} \langle \mu, f_n \rangle = \langle \mu, \tilde{f} \rangle \quad \forall \mu \in M(X).$$

But

$$\langle \mu, f_n \rangle = \int f_n \ d\mu \quad \forall \mu \in K$$

By the Lebesgue convergent's theorem

$$\exists h \in \mathcal{B}_1(X) : \langle f, \mu \rangle = \int h \ d\mu,$$

or

$$f = T(h).$$

Let us prove the Claim above.

Actually the Claim holds in a more general setting.

Let X be a Banach space, $K = (B_{X^*}, weak^*), f \in X^{**}$. Then

f is of 1th Baire class $\iff f|_K$ is of 1th Baire class.

Subcalim: Let X be a subspace of Y and $G \in X^{**} \subseteq Y^{**}$. If G is of 1th Baire class in Y^{**} then G is of 1th Baire class in X^{**} .

Indeed, assuming ||G|| = 1. If there exists $(b_n)_n \subseteq Y$ such that $b_n \xrightarrow{n \to \infty} G$ weak^{*} (or pointwise). We show that

$$d(B_X, \overline{co}\{b_N, b_{N+1}, \ldots\}) = 0, \quad \forall N \in \omega,$$

or it is the same to say that we can choose $(x_n)_n \subseteq X$ and $\overline{b_n}$ convex combination of b_n 's such that

$$||x_n - \overline{b_n}|| \longrightarrow 0.$$

Indeed, since $\overline{b_n} \longrightarrow G$ weakly^{*} (on Y^*), then

 $x_n \longrightarrow G$ weakly^{*} (on Y^*) and for Hahn-Banach

$$x_n \longrightarrow G$$
 weakly^{*} (on X^*).

If there exists $N \in \omega$ such that $d(B_X, \overline{co}\{b_N, b_{N+1}, \ldots\}) > 0$, by the Hahn-Banach separation

$$\exists f \in Y^* : \sup_{x \in B_X} f(x) < \inf_{j \ge N} f(b_j).$$

By Goldstein's theorem

$$|G(f)| \le \sup_{x \in B_X} |f(x)| < \inf_{j \ge N} f(b_j) \le \lim_{j \to \infty} f(b_j) = G(f)$$

Now, suppose $f \in C(X)^{**}$ is such that $f|_K$ is of 1th Baire class.

Let us denote by $supp \mu = \{x \in X : |\mu|(U) > 0 \ \forall U \text{ open neighborhood of } x\}$ with $\mu \in M(X)$. For $S \subseteq X$ let us denote by

$$\mathcal{P}(S) = \{ \mu \in M(X) : \|\mu\| = 1, \ supp \mu \subseteq S \}.$$

Then, $\mathcal{P}(S)$ is a weak^{*} closed of K.

Suppose f is not of 1th Baire class on $(C(X)^*, weak^*)$. We want to show that $\exists \mu \in M(X)$ such that

 $f|_{\mathcal{P}(supp\mu)}$ has no point of continuity in $\mathcal{P}(supp\mu)$.

Let us consider

 $\mathcal{P}_d(S)$ the set of all purely atomic member of $\mathcal{P}(S)$. Notice that it is weak^{*} dense in $\mathcal{P}(S)$;

 $\mathcal{P}_{\mu}(S)$ the set of all μ -continuous members of $\mathcal{P}(S)$.

If either $Y = \mathcal{P}_d(S)$ or $Y = \mathcal{P}_\mu(S)$ then Y is convex and

$$||f||_{\infty} = \sup_{\nu \in Y} |\int f \, d\mu| \quad \forall f \in C(S).$$

Obvious $X \hookrightarrow K = B_{M(X)}$, then $f|_X$ is of 1th Baire class. Let us define $g \in C(X)^{**}$ by

$$g(\mu) = \int f(\xi) \ d\mu(\xi), \quad \forall \mu \in M(X).$$

Of course, $g \in \mathcal{B}_1(C(X)^*)$. Then,

$$h = f - g \in \mathcal{B}_1(K).$$

Let us show that h = 0.

By definition of h we have that $h(\mu) = 0$ for all $\mu \in \mathcal{P}_d(X)$.

If $h \neq 0$, then $\exists \nu \in \mathcal{P}(X) : h(\nu) \neq 0$ (we can suppose $h(\nu) > 0$). By the Radon-Nikodym's theorem, we have that

$$\mathcal{P}_{\nu}(X) = L_1(\nu)$$

Then

 $h|_{\mathcal{P}_{\nu}(X)}$ is a bounded linear functional on $\mathcal{P}_{\nu}(X)$.

By Riesz representation's theorem, there exists a bounded Borel measurable function ϕ such that

$$h(\lambda) = \int \phi \ d\lambda \qquad \forall \lambda \in \mathcal{P}_{\nu}(X)$$

In particular $h(\nu) = \int \phi \, d\nu > 0$. Which implies

$$\int \phi^+ \ d\nu > 0$$

Let c > 0 such that $\nu(E) > 0$ where $E = \{\xi : \phi(\xi) \ge c\}$. It follows that

if
$$\lambda \in \mathcal{P}(X)$$
: $\lambda(X \setminus E) = 0 \Rightarrow \int \phi \ d\lambda = \int_E \phi \ d\lambda \ge c.$

Let us define $\mu \in \mathcal{P}(X)$ as

$$\mu(B) = \frac{\nu(B \cap E)}{\nu(E)}.$$

Then $h(\lambda) \ge c$ for all $\lambda \in \mathcal{P}_{\mu}(X)$.

Let $S = supp\mu$. Then

 $h \geq c$ on $\mathcal{P}_{\mu}(X)$ (which is weak*-dense in $\mathcal{P}(X)$), and

h = 0 on $\mathcal{P}_d(X)$ (which is weak*-dense in $\mathcal{P}(X)$)

 $\Rightarrow h|_{\mathcal{P}(S)}$ has no point of continuity in $\mathcal{P}(S)$. But $\mathcal{P}(S) \subseteq K$ and $h|_K \in \mathcal{B}_1(K)$. Namely a contradiction.

Proof. of $(1) \Rightarrow (b)$

 $F \subseteq \mathcal{B}_1(X)$ is relatively compact.

If X is compact, by Lemma 1.24, $T(F) \subseteq bd - \mathcal{B}_1(X)$ is relatively compact.

If X is not compact, let $(f_{\alpha}) \subseteq F$ be a net such that $f_{\alpha} \longrightarrow f$, $c = \sup_{\alpha} |f_{\alpha}|$ and $\mu \in M(X)$.

By Ulam's theorem, given $\varepsilon > 0 \ \exists K \subseteq X \text{ compact} : |\mu|(X \setminus K) < \varepsilon$.

Therefore, the restriction map $\mathcal{B}_1(X) \longrightarrow \mathcal{B}_1(K)$ is continuous (easy!). Then $F|_K$ is relatively compact in $\mathcal{B}_1(K)$. By all considerations above

$$\int_K f_\alpha \ d\mu \longrightarrow \int_K f \ d\mu.$$

Consequently,

$$\limsup_{\alpha} |\int (f_{\alpha} - f) \, d\mu| \le \limsup_{\alpha} \int_{X \setminus K} |f_{\alpha} - f| \, d\mu \le 2c\varepsilon.$$

Since $\varepsilon > 0$ was arbitrary, we have (b).

Definition 1.25. A topological space (X, θ) is called *Cech-complete* if it can be considered as a G_{δ} subset of a compact Hausdorff space; i.e., there exists a compact Hausdorff space Z and a countable family of open $(A_n)_n$ in Z so that $X = \bigcap_n A_n$.

Remark 1.26. (i) Any locally compact Hausdorff space is Chec-complete (being open in its one-point compactification);

(ii) any complete metric space is Cech-complete (being G_{δ} in its Cech-Stone compactification).

Before to enunciate the main result of this section, we shall need a bunch of lemmas

Lemma 1.27. Let X be a Cech-complete space and A a family of pairs (A, B), with $A, B \subseteq X$ are open's.

Suppose there is $Y \subseteq X$ non empty so that \mathcal{A} is weakly dense over Y (i.e., $\forall E_0, \ldots, E_n \subseteq X$ open's : $E_k \cap Y \neq \emptyset$, $k = 0, \ldots, n$, then $\exists (G, H) \in \mathcal{A}$ such that $G \cap E_i \cap Y \neq \emptyset$, $H \cap E_i \cap Y \neq \emptyset$ for all $i = 0, \ldots, n$).

Then there is $(G_n, H_n)_n \subseteq \mathcal{A}$ and a compact set $K \subseteq X$ such that

$$K \cap \bigcap_{n \in I} G_n \cap \bigcap_{n \in \omega \setminus I} H_n \neq \emptyset \quad \forall I \subseteq \omega.$$

Proof. By hypothesis, there is a compact Hausdorff space Z and $(A_n)_n$ open subsets in Z such that $X = \bigcap_{n \in \omega} A_n$.

Let

$$\mathcal{B} = \{ (G, H) : G, H \subseteq Z \text{ open's, } (G \cap X, H \cap X) \in \mathcal{A} \}.$$

We have that \mathcal{B} is weakly dense over Y.

Claim: There exist $\{(G_n, H_n) : n \in \omega\}$ and open sets $C_{P,Q}$ in Z such that

(i) $C_{P,Q}$ is defined for pairs (P,Q) which is a partition of $\{0,\ldots,n\}$, for some $n \in \omega$, and $C_{P,Q}$ is a non empty open set in Z such that

 $C_{P,Q} \cap Y \neq \emptyset$ and

 $\overline{C_{P,Q}} \subseteq A_n \cap \bigcap_{n \in P} G_n \cap \bigcap_{n \in Q} H_n.$

(ii) If $P \subseteq P'$ and $Q \subseteq Q'$, then $C_{P',Q'} \subseteq C_{P,Q}$.

As Y is non empty, by hypothesis there is $(G_0, H_0) \in \mathcal{B}$ such that

$$G_0 \cap Y \neq \emptyset$$
 $H_0 \cap Y \neq \emptyset$.

Choose a non empty open sets $C_{\{0\},\emptyset}, C_{\emptyset,\{0\}}$ in Z such that

$$C_{\{0\},\emptyset} \cap Y \neq \emptyset \qquad C_{\emptyset,\{0\}} \cap Y \neq \emptyset.$$

and

$$\overline{C_{\{0\},\emptyset}} \subseteq G_0 \cap A_0, \qquad \overline{C_{\emptyset,\{0\}}} \subseteq H_0 \cap A_0$$

Suppose that G_i , H_i have been chosen for all $i \leq n$ and $C_{P,Q}$ has been found for each partition (P, Q) of $\{0, \ldots, n\}$.

Each $C_{P,Q}$ is a non empty open set in Z such that $C_{P,Q} \cap Y \neq \emptyset$. As \mathcal{B} is weakly dense over $Y, \exists (G_{n+1}, H_{n+1}) \in \mathcal{B}$:

$$G_{n+1} \cap C_{P,Q} \cap Y \neq \emptyset, \qquad H_{n+1} \cap C_{P,Q} \cap Y \neq \emptyset,$$

for every partition (P,Q) of $\{0,\ldots,n\}$. Now, for every partition (P,Q) of $\{0,\ldots,n\}$ choose $C_{P\cup\{n+1\},Q}$ and $C_{P,Q\cup\{n+1\}}$ two open sets such that

 $C_{P\cup\{n+1\},Q} \cap Y \neq \emptyset, \qquad C_{P,Q\cup\{n+1\}} \cap Y \neq \emptyset$

and

$$\overline{C_{P\cup\{n+1\},Q}} \subseteq G_{n+1} \cap A_{n+1}, \qquad \overline{C_{P,Q\cup\{n+1\}}} \subseteq H_{n+1} \cap A_{n+1}.$$

Let us define

$$K = \bigcap_{n \in \omega} \bigcup \{ \overline{C_{P,Q}} : (P,Q) \text{ is a partition of } \{0,\ldots,n\} \}.$$

Then K is closed in Z and then compact. For $I \subseteq \omega$, let

$$P_n = \{i \in I : i \le n\} \text{ and } Q_n = \{i \notin I : i \le n\},\$$

 (P_n, Q_n) is a partition of $\{0, \ldots, n\}$. Since Z is compact

$$\emptyset \neq \bigcap_{n \in \omega} \overline{C_{P_n,Q_n}} \subseteq K \cap \bigcap_{n \in I} G_n \cap \bigcap_{n \in \omega \setminus I} H_n.$$

Finally, as $\overline{C_{P,Q}} \subseteq A_n$ for each partition (P,Q) of $\{0,\ldots,n\}$, we get

 $K \subseteq X.$

Lemma 1.28. Let X be a regular Hausdorff space which is sequentially compact and such that

(C) if $A \subseteq X$, $x \in \overline{A}$, there exists a countable set $A_0 \subseteq A$: $x \in \overline{A_0}$.

Let $(x_n)_n$ be a sequence in X and $(I_n)_n$ be a decreasing sequence of infinite subsets of ω such that

 $(x_i)_{i \in I_n}$ have a common cluster point x.

Then there is an infinite set $I \subseteq \omega$: $I \setminus I_n$ is finite, for all $n \in \omega$, and x is a cluster point of $(x_i)_{i \in I}$.

Proof. Let

 $F = \{ \lim_{i \in I} x_i : I \text{ is an infinite set}, \lim_{i \in I} x_i \text{ exists and } I \setminus I_n \text{ is finite } \forall n \in \omega \}.$

Claim: $x \in \overline{F}$.

For a neighborhood U of x, let $J = \{i \in \omega : x_i \in U\}$. Then $J \cap I_n$ is a infinite set.

As $(I_n)_n$ is decreasing, there is an infinite $K \subseteq J: K \setminus I_n$ is finite $\forall n \in \omega$. Now, X is sequentially compact. Therefore, there is an infinite $I \subseteq K$ such that

$$z = \lim_{i \in I} x_i$$

exists.

We have $z \in F \cap \overline{U}$. Since X is regular, $x \in \overline{F}$.

By hypothesis (C), there is $(z_m)_m \subseteq F$ such that $x \in \overline{\{z_m : m \in \omega\}}$. Every

$$z_m = \lim_{i \in J_m} x_i$$

where J_m is infinite: $J_m \setminus I_n$ is finite $\forall n \in \omega$.

Let $I = \bigcup_{n \in \omega} (I_n \cap J_n)$. Then

 $I \setminus I_n$ is finite, and $J_n \setminus I$ is finite, $\forall n \in \omega$.

Follows that z_m is a cluster point of $(x_i)_i$. But the set of cluster points of a sequence is always closed. Thus, x is a cluster point of $(x_i)_{i \in I}$.

Lemma 1.29. Let X be a Polish space, $(x_n)_n$ a sequence in $C_p(X)$:

(i) $\{x_n : n \in \omega\}$ is relatively compact in $\mathcal{B}_1(X)$;

(ii) 0 is a cluster point of $(x_n)_n$ in the pointwise topology.

Let $W \subseteq X$ be a non empty closed set and $\varepsilon > 0$. Then there is a non empty relatively open $U \subseteq W$ and an infinite $J \subseteq \omega$:

- (a) 0 is a cluster point of $(x_i)_{i \in J}$;
- (b) $\limsup_{i \in J} |x_i(t)| \le 2\varepsilon$ for all $t \in U$.

Proof. $\forall I \subseteq \omega$ infinite, let

 $A(I) = \{ \text{cluster points of } (x_i)_{i \in I} \} \subseteq \mathcal{B}_1(X).$

Suppose the Lemma fails. If

$$G_i = \{t \in X : |x_i(t)| < \varepsilon\}, \quad H_i = \{t \in X : |x_i(t)| > 2\varepsilon\},\$$

let

$$\mathcal{A} = \{ (G_i, H_i) : i \in \omega \}.$$

Claim: \mathcal{A} is weakly dense over W.

Indeed, let $E_0, \ldots, E_n \subseteq X$ open sets with $E_i \cap W \neq \emptyset$, $i = 0, \ldots, n$. Let $s_i \in E_i \cap W$, $i = 0, \ldots, n$ and

$$I = \{ i \in \omega : |x_i(s_r)| < \varepsilon, \ \forall r \le n \}.$$

Then, by (ii) above, $0 \in A(I)$. Let

$$J_r = \{ i \in I : |x_i(t)| \le 2\varepsilon, \forall t \in E_r \cap W \}.$$

By our hypothesis, $0 \notin A(J_r)$ for any $r \leq n$. Since

$$A(\bigcup_{r\leq n} J_r) = \bigcup_{i\leq n} A(J_r),$$

it follows that $I \neq \bigcup_{n \geq r} J_r$. If i is any point of $I \setminus \bigcup_{r \leq n} J_r$, we have

 $G_i \cap E_r \cap W \neq \emptyset$ (as $i \in I$) $H_i \cap E_r \cap W \neq \emptyset$ (as $i \notin J_r$).

By Lemma 1.27, there exists $K \subseteq X$ compact such that

$$K \cap \bigcap_{n \in I} G_n \cap \bigcap_{n \in \omega \setminus I} H_n \neq \emptyset, \quad \forall I \subseteq \omega.$$

In particular, there is a sequence $(y_n)_n$ in $\{x_i, i \in \omega\}$ such that, for every $I \subseteq \omega$

$$\{t \in K : |y_n(t)| < \varepsilon, \ \forall n \in I, \ |y_n(t)| > 2\varepsilon \ \forall n \in \omega \setminus I\} \neq \emptyset.$$

It follows that $(|y_n|)_n$ can have no convergent subsequence (as well as $(y_n)_n$). But $(y_n)_n$ is a sequence in $\{x_i : i \in \omega\}$ which is relatively compact. By Theorem 1.22, it is relatively sequentially compact in $\mathcal{B}_1(X)$. A contradiction.

Lemma 1.30. Let X be a Polish space, $(x_n)_n$ be a sequence in $C_p(X)$ such that

(i) $\{x_n : n \in \omega\}$ is relatively compact in $\mathcal{B}_1(X)$;

(ii) 0 is a cluster point of $(x_n)_n$.

Then there is an infinite set $I \subseteq \omega$ such that

$$\limsup_{i \in I} |x_i(t)| \le \varepsilon, \quad \forall t \in X$$

and 0 is a cluster point of $(x_i)_{i \in I}$.

Proof. For each $I \subseteq \omega$, let

$$U(I) = int\{t: \limsup_{i \in I} |x_i(t)| \le \varepsilon\}$$

and A(I) the set of all cluster points of $(x_i)_{i \in I}$.

Note that, if $I \setminus J$ is finite $\Rightarrow U(I) \supseteq U(J)$.

Let $(V_k)_k$ be a base of X and let us start with $I_0 = \omega$. Given I_k such that $0 \in A(I_k)$. Then, if there is an infinite $I \subseteq I_k$: $0 \in A(I)$ and $V_k \subseteq U(I)$, take $I_{k+1} = I$. Otherwise choose $I_{k+1} = I_k$.

Therefore, the sequence $(I_k)_k$ is decreasing: $0 \in A(I_k)$ for all $k \in \omega$.

By Lemma 1.28 for the set $\overline{\{x_i, i \in \omega\}}$ there is an infinite $I \subseteq \omega$ such that

 $0 \in A(I)$ and $I \setminus I_k$ is finite $\forall k \in \omega$.

Fix $J \subseteq I$ infinite such that $0 \in A(J)$. Then, $U(J) \supseteq U(I)$.

If $U(J) \neq U(I)$, there should exists $k \in \omega$ such that $V_k \subseteq U(J)$ but $V_k \not\subseteq U(I)$.

Since $J \setminus I_k$ is finite, it follows that $J \cap I_k$ is infinite in $I_k: 0 \in A(J \cap I_k)$ and $V_k \subseteq U(J \cap I_k)$ (for construction of I_k).

Therefore, $V_k \subseteq U(I_{k+1})$. But in this situation $I \setminus I_{k+1}$ has to be finite, so that

 $V_k \subseteq U(I_{k+1}) \subseteq U(I),$

which contradicts the assumption above.

What we have is:

(a)
$$U(J) = U(I) \quad \forall J \subseteq I : 0 \in A(J).$$

Claim: U(I) = X.

Suppose not. Let $W \subseteq X \setminus U(I)$ be a non empty closed set. By the Lemma 1.29 applied to $(x_i)_{i \in I}$ there exists $J \subseteq I: 0 \in A(J)$ and

$$\limsup_{i \in J} |x_i(t)| \le \varepsilon, \ \forall t \in U, \text{ where } U \text{ is some open of } W.$$

Thus

$$\limsup_{i \in J} |x_i(t)| \le \varepsilon, \ \forall t \in U \cup U(I)$$

and

$$U(J) \subseteq int[U \cup U(I)] \neq U(I).$$

Which contradicts (a) above.

Corollary 1.31. Let X be a Polish space, $(x_n)_n$ be a sequence in $C_p(X)$ such that

- (i) $(x_n)_n$ is relatively compact;
- (ii) 0 is a cluster point of $(x_n)_n$.

Then, there is a subsequence of $(x_n)_n$ converging to 0.

Proof. By Lemma 1.30, for $\varepsilon = \frac{1}{2^k} \exists I_k \subseteq \omega, k \in \omega$ so that

$$\limsup_{i \in I_k} |x_i(t)| \le \frac{1}{2^k}, \quad \forall t \in X, \ k \in \omega.$$

Notice that we can always choose $(I_k)_k$ decreasing. Therefore, let us consider $I \subseteq \omega$: $I \setminus I_k$ is finite $\forall k \in \omega$. that implies

$$\lim_{i \in I} x_i = 0.$$

Here we are ready to enunciate the main result

Theorem 1.32. (Bourgain-Fremlin-Talagrand) If X is a Polish space, then $\mathcal{B}_1(X)$ is angelic.

Proof. Actually, Theorem 1.22 says us that every relatively countably compact is relatively compact in $\mathcal{B}_1(X)$.

We need to show the other condition of angelicity.

Let us consider $A \subseteq \mathcal{B}_1(X)$ a relatively compact, $x \in \overline{A}$. By Theorem 1.22(a), there is a sequence $(x_n)_n \subseteq A$ such that x is a cluster point of $(x_n)_n$.

Let us define

$$\varphi: X \longrightarrow \mathbb{R}^{\omega}$$

given by

$$\varphi(t)(0) = x(t)$$

$$\varphi(t)(n+1) = x_n(t),$$

for all $t \in X$ and $n \in \omega$.

1. φ is a Borel map.

It is enough to show that, if $n_i, \ldots n_k \in \omega$, then

$$\varphi^{-1}(\{f \in \mathbb{R}^{\omega} : |f(n_i)| < \sigma, i = 1, \dots, k\}$$

is Borel.

But this set coincides with

$$\{t \in X : |\varphi(t)(n_i)| < \sigma, \ i = 1, \dots, k\} = \bigcap_{i=1}^k \{t \in X : |x_{n_i-1}| < \sigma\}.$$

Since each x_n set in $\mathcal{B}_1(X)$, we have that $\{t \in X : |x_{n_i-1}| < \sigma\}$ is a G_{δ} set (the inverse image f an open set through a 1th Baire class function is a G_{δ}). Therefore, φ is Borel.

2. Let us consider $\{(x, y) : \varphi(x) = y\} \subseteq X \times \mathbb{R}^{\omega}$. Letting

$$h(x,y) = |y - \varphi(x)|$$

we have that h is a Borel map. Since

$$\{(x,y): \varphi(x) = y\} = h^{-1}(0)$$

we have that $L = \{(x, y) : \varphi(x) = y\}$ is Borel in $X \times \mathbb{R}^{\omega}$.

Let us denote by

 $P:X\times \mathbb{R}^{\omega} \longrightarrow \mathbb{R}^{\omega}$

the second projection. Since $Y = \varphi(X)$ coincides with P(L), we have that Y is an analytic set. From what we have seen in the Tertulia seminar [5], there must exists a polish space Z and a continuous surjection

$$\psi: Z \longrightarrow Y = \phi(X) \subseteq \mathbb{R}^{\omega}.$$

Set

$$y(u) = u(0)$$
$$y_n(u) = u(n+1),$$

as elements of \mathbb{R}^{Y} .

We see that y is a cluster point of $(y_n)_n$ in \mathbb{R}^Y and every subsequence of $(y_n)_n$ has a convergent subsequence (this because A is relatively sequentially compact in $\mathcal{B}_1(X)$), then every subsequence of $(x_n)_n$ has a convergent subsequence). Let

$$z = y \circ \psi$$
$$z_n = y_n \circ \psi$$

as element of \mathbb{R}^Z . Therefore, z is a cluster point of $(z_n)_n$ in \mathbb{R}^Z . Notice that $(z_n)_n \subseteq C_p(Z)$ (since each y_n is continuous projection coordinate and ψ is continuous). Moreover every subsequence of $(z_n)_n$ has a convergent extract. By Rosenthal's theorem (Theorem 1.22), $\{z_n, n \in \omega\}$ is relatively compact in $\mathcal{B}_1(Z)$. We also have $z \in C_p(Z)$. Let us apply Corollary 1.31 to $(z_n - z)_n$ to get a subsequence $(z_n)_{n \in I}$ convergent to z. By construction, first we have

$$\lim_{n \in I} y_n = y$$

and secondly

$$\lim_{n \in I} x_n = x$$

as required.

Let us give another characterization of 1th Baire class function in the same spirit of the Baire characterization theorem.

Lemma 1.33. (Talagrand)

Let X be a complete metric space, $x \in \mathbb{R}^X$. Then $x \in \mathcal{B}_1(X)$ if and only if $x|_K \in \mathcal{B}_1(K)$, for every compact $K \subseteq X$.

Proof. Of course, one way of it is trivial. All we need to show is that if $x|_K \in \mathcal{B}_1(X)$ for every compact $K \subseteq X$, then $x \in \mathcal{B}_1(X)$.

By Baire characterization theorem (see Theorem 1.9), it is enough to show that for every closed $M \subseteq X$, $f|_M$ has a point of continuity relative to M. For $\alpha, \beta \in \mathbb{R}$ with $\alpha < \beta$, let us denote

$$S(\alpha) = \{t \in M : x(t) \le \alpha\}, \qquad T(\beta) = \{t \in M : x(t) \ge \beta\}.$$

Therefore, it is enough to show that whenever $\alpha < \beta$,

$$int\overline{S(\alpha)} \cap int\overline{T(\beta)} = \emptyset,$$

or it is the same to say that: $x \in \mathcal{B}_1(X)$ if and only if for every closed closed set $M \subseteq X$ and $\alpha < \beta$,

one of $\overline{M \cap S(\alpha)}$, $\overline{M \cap T(\beta)}$ is not equal to M.

Suppose $x \notin \mathcal{B}_1(X)$. Then there is a non empty closed set $M \subseteq X$, $\alpha < \beta$ reals, so that

 $S(\alpha), T(\beta)$ are dense in M

By induction, we can choose a sequence of finite sets $A_n \subseteq S(\alpha) \cup T(\beta)$ such that

30

- (i) $A_0 \neq \emptyset$;
- (ii) $A_n A_{n+1}, \forall n \in \omega;$
- (iii) $\forall t \in A_{n+1}, \exists s \in A_n \text{ such that } d(t,s) \leq \frac{1}{2^n};$
- (iv) $\forall s \in A_n, \exists t \in A_{n+1} \text{ such that } d(t,s) \leq \frac{1}{2^n} \text{ and } |x(s) x(t)| \geq \beta \alpha.$

Since X is a complete metric space, then

$$K = \overline{\bigcup_{n \in \omega} A_n}$$

is compact (because it is complete and totally bounded).

Hence $K \cap S(\alpha)$, $K \cap T(\beta)$ are dense in K. That implies $x|_K \notin \mathcal{B}_1(K)$. A contradiction.

Lemma 1.34. (Talagrand)

Let X be a complete metric space. Then

 $x \in \mathcal{B}_1(X)$ if and only if for every non empty open $U \subseteq X$, $\varepsilon > 0$ there is a non empty open $V \subseteq U$ such that $diam(x(V)) \leq \varepsilon$.

Proof. If $x \in \mathcal{B}_1(X)$, we already know that the points of continuity of x is dense in X. Therefore, if we fix $t \in U$ and consider the continuity condition, we have that the condition is trivially satisfies.

Suppose we start with the condition, but $x \notin \mathcal{B}_1(X)$.

Thus, we can consider $E, F \subseteq \mathbb{R}$ closed and disjoint such that

if $U = int\overline{x^{-1}(E)} \cap int\overline{x^{-1}(F)} \neq \emptyset$

then $U \cap x^{-1}(E)$ and $U \cap x^{-1}(F)$ are dense in U.

By our condition, we can choose a sequence $(V_n)_n$ of non empty open sets in X such that

- (i) $V_0 \subseteq U$;
- (ii) $V_n \subseteq V_{n-1}$, for all $n \in \omega$;
- (iii) $diam(x(V_n)) \leq \varepsilon$, for all $n \in \omega$;

Now,

$$V_n \cap x^{-1}(E) \neq \emptyset, \qquad V_n \cap x^{-1}(F) \neq \emptyset.$$

Let $s_n \in V_n \cap x^{-1}(E)$ and $t_n \in V_n \cap x^{-1}(F)$ for all $n \in \omega$. Therefore, $(x(s_n))_n$ and $(x(t_n))_n$ are two Cauchy sequences in \mathbb{R} which must have a common limit in $E \cap F$ (which contradicts that E and F are disjoints). Let us fix some notation.

For any sets A, X and $S \subseteq A \times X$, let

$$\pi_1(S) = \{ x \in A : \exists t \in X \ (x,t) \in S \},\$$
$$S(x) = \{ t \in X : \ (x,t) \in S \},\$$
$$S^{-1}(t) = \{ x \in A : \ (x,t) \in S \}.$$

Let Σ and \mathcal{B} two σ -algebras of subsets of A and X respectively. $\Sigma \stackrel{\wedge}{\otimes} \mathcal{B}$ will denote the σ -algebra generated by $\{E \times F : E \in \Sigma, F \in \mathcal{B}\}$.

Lemma 1.35. Let (A, Σ, μ) be a complete probability space and X be a compact metric space. Let \mathcal{B} be the σ -algebra of Borel sets in X. Then

$$\pi_1(S) \in \Sigma, \quad \forall S \in \Sigma \overset{\wedge}{\otimes} \mathcal{B}.$$

Proof. Of course, we can write S in the form

$$S = \bigcup \{ \cap_n E_{\phi|_n} \times F_{\phi|_n} : \phi \in \omega^\omega \},\$$

where $\phi|_n = (\phi(0), \dots, \phi(n)), E_{\phi|_n} \in \Sigma$ and $F_{\phi|_n}$ are closed in X.

Without loss in generality, we can assume, as well as we do, that

$$E_{\phi|_{n+1}} \subseteq E_{\phi|_n}, \quad F_{\phi|_{n+1}} \subseteq F_{\phi|_n}, \ \forall n \in \omega.$$

Therefore,

$$\pi_1(S) = \bigcup \{ \pi_1(\cap_n E_{\phi|_n} \times F_{\phi|_n}) : \phi \in \omega^\omega \}$$

= $\bigcup \{ \cap_n \pi_1(E_{\phi|_n} \times F_{\phi|_n}) : \phi \in \omega^\omega \}$
= $\bigcup \{ \cap_n E_{\phi|_n} : \phi \in \omega^\omega \},$

which lies in Σ .

Lemma 1.36. Let (A, Σ, μ) be a complete probability measure and (X, d) be a compact metric space.

Let S and T subsets of $A \times X$ such that

- (*) $S^{-1}(t), T^{-1}(t) \in \Sigma$, for all $t \in X$;
- (**) for every $x \in A$ and every non empty closed $F \subseteq X$ at least one of the sets

 $\overline{F \cap S(x)}$, $\overline{F \cap T(x)}$ is not equal to F.

32

Then, for any $\delta > 0$ and any non epty open $U \subseteq X$ there is a non empty open $V \subseteq U$ such that

$$\mu(S^{-1}(s)) + \mu(T^{-1}(t)) \le 1 + 3\delta, \quad \forall s, t \in V.$$

Proof. Let us fix $(V_n)_n$ be a base of X.

Case 1. $S, T \in \Sigma \overset{\wedge}{\otimes} \mathcal{B}$. Let us define $(\Psi_{\xi})_{\xi < \omega_1} \subseteq A \times X$ as follows:

$$\Psi_0 = A \times X;$$

for a given $\xi < \omega_1$ even, let

$$\Psi_{\xi+1} = \{ (x,t) : x \in A, t \in \overline{S(x)} \cap \Psi_{\xi}(x) \}, \Psi_{\xi+2} = \{ (x,t) : x \in A, t \in \overline{T(x)} \cap \Psi_{\xi}(x) \};$$

and for limit ordinals $\xi < \omega_1$ let

$$\Psi_{\xi} = \bigcap_{\eta < \xi} \Psi_{\eta}.$$

Then we have

- (a) $\Psi_{\xi}(x)$ is closed in $X, \forall x \in A$;
- (b) $\Psi_{\xi} \subseteq \Psi_{\eta}$, whenever $\eta \leq \xi < \omega_1$;
- (c) $\Psi_{\xi+2}(x) \subsetneq \Psi_{\xi}(x)$ if $\Psi_{\xi}(x) \neq \emptyset$ (by our hypothesis on S and T).

Claim 1. $\Psi_{\xi} \in \Sigma \overset{\wedge}{\otimes} \mathcal{B}.$

Of course, for $\xi = 0$ it is clear.

Suppose the Claim holds for ξ , then

$$\Psi_{\xi+1} = \{(x,t) : t \in \overline{S(x) \cap \Psi_{\xi}(x)}\}$$

= $\bigcap_{k} \{(x,t) : \text{ either } t \notin V_{k} \text{ or } V_{k} \cap S(x) \cap \Psi_{\xi}(x) \neq \emptyset\}$
= $\bigcap_{k} [(A \times X \setminus V_{k}) \cup \pi_{1}(A \times V_{k} \cap S \cap \Psi_{\xi}) \times X].$

By the previous lemma, we have that $\Psi_{\xi+1} \in \Sigma \overset{\wedge}{\otimes} \mathcal{B}$. Similarly for $\Psi_{\xi+2}$. Now, for all $k \in \omega, \xi < \omega_1$, let

$$E_{k,\xi} = \pi_1 \left((A \times V_k) \cap S \cap \Psi_\xi \right)$$

Notice that, for fixed $k \in \omega$, $(E_{k,\xi})_{\xi < \omega_1}$ i a decreasing sequence in Σ .

Since μ is a probability measure,

$$\exists \eta < \omega_1 : \ \mu(E_{k,\xi}) = \mu(E_{k,\eta} \quad \forall \xi \ge \eta.$$

 Set

$$A_1 = A \setminus \bigcup_{k \in \omega} \left(E_{k,\eta} \setminus E_{k,\eta+2} \right).$$

Then $\mu(A \setminus A_1) = 0$. Let us fix $x \in A_1$, we have

$$\{k \in \omega : x \in E_{k,\eta+2}\} = \{k \in \omega : x \in E_{k,\eta}\}.$$

So

$$\Psi_{\eta+1}(x) = \{t \in X : \forall k \in \omega \text{ either } t \notin V_k \text{ or } x \in E_{k,\eta}\} = \Psi_{\eta+3}(x).$$

By (c) we have that $\Psi_{\eta+1}(x) = \emptyset$.

What we have is that: there is a countable ordinal $\eta_0 = \eta + 1$ and $A_1 \subseteq A$ such that

$$u(A \setminus A_1) = 0$$
 and $\Psi_{\eta_0}(x) = \emptyset, \ \forall x \in A_1.$

Now, for all $n \in \omega$, $\xi < \omega_1$, let us define

$$\Phi_{n,\xi} = \{ (x,t) \in \Psi_{\xi} : \ d(y,\Psi_{\xi+1}) \ge \frac{1}{2^n} \}.$$

Claim 2. $\Phi_{n,\xi} \in \Sigma \overset{\wedge}{\otimes} \mathcal{B}.$

Let $(t_n)_n$ be a countable dense subset of X. Then,

$$\Phi_{n,\xi} = \Psi_{\xi} \setminus \bigcup \{ R(\alpha, \beta, k) : \ \alpha, \beta \in \mathbb{Q}, \ \alpha + \beta < \frac{1}{2^n}, \ k \in \omega \}$$

where

$$R(\alpha, \beta, k) = \{ (x, t) : d(t, t_k) \le \beta, N_\alpha(t_k) \cap \Psi_{\xi+1}(x) \ne \emptyset \}$$
$$= \pi_1 (A \times N_\alpha(t_k) \cap \Psi_{\xi+1}) \times N_\beta(t_k).$$

and

$$N_{\alpha}(t_k) = \{t \in X : d(t, t_k) \le \alpha\}.$$

Therefore, $\Phi_{n,\xi} \in \Sigma \overset{\wedge}{\otimes} \mathcal{B}$, for all $n \in \omega$ and $\xi < \omega_1$.

Moreover, each $\Phi_{n,\xi}$ is closed.

If $\eta < \xi$ then $d(\Phi_{n,\xi}(x), \Phi_{n,\eta}(x)) \ge \frac{1}{2^n}$ for all $n \in \omega, x \in A$. Also, we have

$$\Psi_{\xi+1}(x) \text{ is closed};$$
$$\bigcup_{n\in\omega} \Phi_{n,\xi} = \Psi_{\xi} \setminus \Psi_{\xi+1}, \, \xi < \omega_1;$$
$$\bigcup_{n\in\omega,\eta\in\xi} \Phi_{n,\eta} = (A \times X) \setminus \Psi_{\xi}, \, \xi < \omega_1$$

Now, let us consider

$$\Phi_n = \bigcup_{\xi < \eta_0} \Phi_{n,\xi} \in \Sigma \overset{\wedge}{\otimes} \mathcal{B},$$

remembering that η_0 was a countable ordinal.

Let us define

$$h(x,t) = \begin{cases} 1, & \text{if } (x,t) \in \Psi_{\xi} \setminus \Psi_{\xi+1}, \text{ where } \xi \text{ is odd}, \xi \leq \eta_0; \\ 0, & \text{otherwise.} \end{cases}$$

Therefore, h is $\Sigma \bigotimes^{\wedge} \mathcal{B}$ measurable. We know that, if $x \in A_1, t \in X$ Kipping in mind the definition of $\eta_0, t \notin \Psi_{\eta_0}(x)$.

Then, there exists some $\xi < \eta_0$: $t \in \Psi_{\xi}(x) \setminus \Psi_{\xi+1}(x)$ (by hypothesis).

- If ξ is even, h(x,t) = 0 and $t \notin \overline{S(x) \cap \Psi_{\xi}(x)}$, so $(x,t) \notin S$.
- If ξ is odd, then h(x,t) = 1 and $t \notin \overline{T(x) \cap \Psi_{\xi}(x)}$, so $(x,t) \notin T$.

What we have is, $\forall x \in A_1, t \in X$

$$\chi_S(x,t) \le h(x,t), \qquad \chi_T(x,t) \le 1 - h(x,t).$$

By definition of h, for any $x \in A$, $n \in \omega$, $\xi < \omega_1$, h(x,t) is constant for $t \in \Phi_{n,\xi}(x)$.

Therefore, if we denote by $h_x(t) = h(x,t)$, h_x is continuous on $\Phi_n(x) = \bigcup_{\xi < \eta_0} \Phi_{n,\xi}(x)$ (because for fixed $n, x, \Phi_{n,\xi}(x)$ are isolated).

Let B = ball C(X). Let us define

$$\Lambda_n = \{ (x, z) \in A \times B : z(t) = h(x, t), \forall t \in \Phi_n(x) \}.$$

By Tietze's theorem (i.e., every continuous function on a closed subset of a normed space can be extendible over the whole space), $\Lambda_n(x)$ is never empty and clearly it is closed (here, for once, we are giving on *B* the uniform norm topology, so *B* is a Polish space).

Claim 3.

$$\Lambda_n: A \longrightarrow \mathcal{F}(B)$$

is a multifunction measurable; i.e., for every open V subset of $B \{x \in A : \Lambda_n(x) \cap V \neq \emptyset\} \in \Sigma$.

To show that, it is enough that $\{x \in A : \rho(z, \Lambda_n(x)) \leq \varepsilon\}$ is measurable, for all $z \in B, \varepsilon > 0$ (where ρ is a metric on B).

But,

$$\{x: \ \rho(z, \Lambda_n(x)) \le \varepsilon \} = \{x \in A: \ |z(t) - h(x, t)| \le \varepsilon, \ \forall t \in \Phi_n(x) \}$$

= $A \setminus \pi_1 \left(\Phi_n \cap \{(x, t): \ |z(t) - h(x, t)| > \varepsilon \} \right) \in \Sigma,$

because h is $\Sigma \overset{\wedge}{\otimes} \mathcal{B}$ measurable and $\Phi_n \in \Sigma \overset{\wedge}{\otimes} \mathcal{B}$.

By the Kuratowski-Ryll-Nardzewski's theorem (see [5]),

 $\exists \lambda : A \longrightarrow B$ measurable function such that

$$\lambda_n(x) \in \Lambda_n(x), \quad \forall x \in A$$

Set $f_n(x,t) = \lambda_n(x)(t) : A \times X \longrightarrow \mathbb{R}$.

Then f_n is measurable in the first variable and continuous in the second one; also, $|f_n(x,t)| \leq 1, \forall x \in A, t \in X$.

By construction, $f_n = h$ on Φ_n . Since $X = \bigcup_{n \in \omega} \Phi_n(x)$, for $x \in A_1$, we have

$$h(x,t) = \lim_{n} f_n(x,t), \quad \forall x \in A_1, \ t \in X.$$

Set

$$z_n(t) = \int f_n(x,t) \, d\mu(x).$$

Then $z_n \in C_p(X)$ and

$$\lim_{n} z_n(t) = \int h(x,t) \ d\mu(x), \quad \forall t \in X;$$

that is because $\forall t \in X$, $\lim_n f_n(x, t) = h(x, t)$ for almost $x \in A$.

Let us consider U the open of the enunciate of the Lemma. Therefore,

$$U = \bigcup_{n \in \omega} \{ t \in U : |z_m(t) - z_n(t)| \le \delta, \forall m \ge n \}.$$

By Baire's theorem (see Theorem 1.4), there is $n_0 \in \omega$ such that

$$G = int\{t \in U : |z_m(t) - z_n(t)| \le \delta, \forall m \ge n\}$$
 is not empty.

Let $V \subseteq G$ be an open set such that $|z_n(s) - z_n(t)| \leq \delta \ \forall s, t \in V$. Therefore,

 $|z_m(s) - z_n(t)| \le \delta, \ \forall s, t \in V, \ m \ge n.$

Since, for $x \in A_1, s, t \in V$

$$\chi_S(x,s) + \chi_T(x,t) \le h(x,s) + 1 - h(x,t),$$

we have

$$\mu(S^{-1}(s)) + \mu(T^{-1}(t)) \le 1 + \int h(x,s) \, d\mu(x) - \int h(x,t) \, d\mu(x)$$
$$= 1 + \lim_{m} [z_m(s) - z_m(t)] \le 1 + 3\delta.$$

Case 2. $S, T \subseteq A \times X$ general sets.

Suppose no such V can be found. Let $I = \{k \in \omega : V_k \cap U \neq \emptyset\}$. Then we can consider, for each $k \in I$, points $s_k, t_k \in V_k \cap U$ such that

$$\mu(S^{-1}(s_k)) + \mu(T^{-1}(t_k)) > 1 + 3\delta.$$

Let

$$S_0 = \bigcup_{k \in I} S^{-1}(s_k) \times \{s_k\}, \quad T_0 = \bigcup_{k \in I} T^{-1}(t_k) \times \{t_k\}.$$

Then $T_0, S_0 \in \Sigma \overset{\wedge}{\otimes} \mathcal{B}, S_0 \subseteq S$ and $T_0 \subseteq T$.

By hypothesis and Case 1., $\exists F \subseteq X, x \in A$ such that

$$F = \overline{F \cap S_0(x)} = \overline{F \cap T_0(x)}.$$

If $V \subseteq U$ is open, then

$$\sup_{s \in V} \mu(S_0^{-1}(s)) + \sup_{t \in V} \mu(T_0^{-1}(t)) > 1 + 3\delta,$$

which clearly contradicts Case 1.

Proposition 1.37. Let (A, Σ, μ) be a complete probability space and X a complete metric space. Let

$$f:A\times X\longrightarrow \mathbb{R}$$

be a bounded function, maesurable in the first variable and of 1th Baire class in the second one.

Then,

$$z(t) = \int f(x,t) \ d\mu(x) \in \mathcal{B}_1(X).$$

Proof. By Lemma 1.33, we may assume that X is a compact metric space.

By Lemma 1.34, we need to show that: $\forall \varepsilon > 0$ and non empty open $U \subseteq X$ there is a non empty open $V \subseteq U$:

$$diam(z(V)) \le \varepsilon.$$

Since f is bounded, we can assume $0 \le f(x,t) \le 1, \forall x \in A, t \in X$.

Let $n \in \omega$ be such that $3n + 1 \leq \varepsilon n^2$. Let us set

$$S_r = \{(x,t): f(x,t) \le \frac{r}{n}\}, \quad T_r = \{(x,t): f(x,t) \ge \frac{r}{n}\}.$$

For each $r \in \omega$, S_r, T_{r+1} satisfy the hypothesis of Lemma 1.36; indeed, $\forall x \in A$, the map $t \longmapsto f(x,t) \in \mathcal{B}_1(X)$ (see the proof of Lemma 1.33).

So, by induction, we can choose non empty open sets $(V_r)_r$ such that

- (i) $V_0 = U;$
- (ii) $V_{r+1} \subseteq V_r$;

(iii)
$$\mu(S_r^{-1}(s)) + \mu(T_{r+1}^{-1}(t)) \le 1 + \frac{1}{n}$$
 for all $s, t \in V_{r+1}, 0 \le r \le n$.

Now, $s, t \in V_{n+1}$ then

(1)
$$\sum_{r \le n} \frac{1}{n} \mu(T_{r+1}^{-1}(t)) \ge \int f(x,t) - \frac{1}{n} d\mu(x) = z(t) - \frac{1}{n},$$

and

(2)
$$\sum_{r \le n} \frac{1}{n} [1 - \mu(S_r^{-1}(s))] \le z(s) + \frac{1}{n}.$$

To see (1), note that, since $T_{r-1}^{-1}(t) \subseteq T_r^{-1}(t)$ and $A = T_0^{-1}(t)$, we have

$$f(x,t) - \frac{1}{n} \le 0, \quad \forall x \in T_0^{-1}(t) \setminus T_1^{-1}(t),$$
$$f(x,t) - \frac{1}{n} \le \frac{1}{n}, \quad \forall x \in T_1^{-1}(t) \setminus T_2^{-1}(t),$$

and so on, and since

$$T_r^{-1}(t) = (T_r^{-1}(t) \setminus T_{r+1}^{-1}(t)) \cup T_{r+1}^{-1}(t),$$

we get

$$\int f(x,t) - \frac{1}{n} d\mu(x) = \int_{T_0^{-1}(t) \setminus T_1^{-1}(t)} f(x,t) - \frac{1}{n} d\mu(x) + \dots \int_{T_n^{-1}(t) \setminus T_{n+1}^{-1}(t)} f(x,t) - \frac{1}{n} d\mu(x) + \dots \int_{T_n^{-1}(t) \setminus T_{n+1}^{-1}(t)} f(x,t) - \frac{1}{n} d\mu(x) + \dots \int_{T_n^{-1}(t) \setminus T_n^{-1}(t)} f(x,t) - \frac{1}{n} d\mu(x) + \dots \int_{T_n^{-1}(t) \setminus T_n^{-1}(t)} f(x,t) - \frac{1}{n} d\mu(x) + \dots \int_{T_n^{-1}(t) \setminus T_n^{-1}(t)} f(x,t) - \frac{1}{n} d\mu(x) + \dots \int_{T_n^{-1}(t) \setminus T_n^{-1}(t)} f(x,t) - \frac{1}{n} d\mu(x) + \dots \int_{T_n^{-1}(t) \setminus T_n^{-1}(t)} f(x,t) - \frac{1}{n} d\mu(x) + \dots \int_{T_n^{-1}(t) \setminus T_n^{-1}(t)} f(x,t) - \frac{1}{n} d\mu(x) + \dots \int_{T_n^{-1}(t) \setminus T_n^{-1}(t)} f(x,t) - \frac{1}{n} d\mu(x) + \dots \int_{T_n^{-1}(t) \setminus T_n^{-1}(t)} f(x,t) + \dots \int_{T$$

$$\leq 0 + \frac{1}{n}\mu(T_1^{-1}(t) \setminus T_2^{-1}(t)) + \frac{2}{n}\mu(T_2^{-1}(t) \setminus T_3^{-1}(t)) + \dots + \mu$$

= $\frac{1}{n}\mu(T_1^{-1}(t)) + \dots + \frac{1}{n}\mu(T_{n+1}^{-1}(t))$
= $\sum_{r \leq n}\mu(T_{r+1}^{-1}(t)).$

The reader can figure out (2) similarly.

Therefore,

$$\begin{aligned} z(t) - z(s) &\leq \sum_{r \leq n} \frac{1}{n} \mu(T_{r+1}^{-1}(t)) + \frac{1}{n} - \sum_{r \leq n} \frac{1}{n} [1 - \mu(S_r^{-1}(s))] + \frac{1}{n} \\ &= \frac{2}{n} + \frac{1}{n} \sum_{r \leq n} [\mu(T_{r+1}^{-1}(t)) + \mu(S_r^{-1}(s)) - 1] \\ (\text{by } (iii)) &\leq \frac{2}{n} + \frac{1}{n} (n+1) \frac{1}{n} \leq \varepsilon. \end{aligned}$$

Theorem 1.38. (Talagrand)

Let X be a complete metric space, $A \subseteq \mathcal{B}_1(X)$ a compact uniformly bounded set.

Then, co(A) is relatively compact in $\mathcal{B}_1(X)$.

Proof. As in the Rosenthal's theorem 1.22, we have that $\overline{co}(A)$ is compact in \mathbb{R}^X .

Then, it is enough to show that $\overline{co}(A) \subseteq \mathcal{B}_1(X)$.

Let $z \in \overline{co}(A)$. As A is compact in the locally convex Hausdorff space \mathbb{R}^X , there is a Radon measure μ on A such that

$$f(z) = \int_A f(x) \ d\mu(x), \quad \forall f \in (\mathbb{R}^X)^*.$$

In particular

$$z(t) = \int_A x(t) \ d\mu(x), \quad \forall t \in X.$$

But, the function $h: A \times X \longrightarrow \mathbb{R}$ defined by

$$h(x,t) = x(t), \quad \forall x \in A, t \in X$$

satisfies the condition of Proposition 1.37. Hence,

$$z(t) = \int h(x,t) \ d\mu(x) \in \mathcal{B}_1(X).$$

39

1.0.2 Summertime

In this section, we are going to show how the space $C_p(X)$ and $\mathcal{B}_1(X)$ play a central rule in the Banach space theory.

Let us start with a classical result due to H. P. Rosenthal, A. Pelczynski and R. Haydon. Originally, the following result was proved using combinatorial tools. The following proof give a more topological character.

Theorem 1.39. Let B be a separable Banach space. Then the following are equivalent

- 0. B contains a copy of ℓ_1 (i.e., ℓ_1 embeds in B);
- 1. There is a bounded sequence in B with no weak-Cauchy subsequence;
- 2. There is a bounded sequence in B^{**} with no weak^{*}-convergent subsequence;
- 3. there is an element of B^{**} which is not 1th Baire class function on $(B_{X^*}, weak^*);$
- There is an element of B^{**} which is not weak^{*}-limit of a sequence of B;
- 5. The cardinality of B^{**} is greater than the cardinality of B;
- 6. There is a bounded weak* strongly countably compact of B** which is not weak* compact (strongly countably compact means that every separable subset has compact closure);
- 7. there is a bounded weak^{*} closed convex subset of B^{*} which is not the norm closure convex hull of the set of its extreme points;
- 8. $L_1[0,1]$ embeds in B^* ;
- 9. $\ell_1(\Gamma)$ embeds in B^* for some uncountable set Γ ;
- 10. C([0,1]) is a continuous linear image of B.

Proof. Since B is a separable Banach space, we have that $X = (B_{B^*}, weak^*)$ is a Polish space. Let us consider

$$F = \{ f|_X \ f \in B^{**}, \ \|f\| \le 1 \}.$$

Therefore, F is a pointwise compact family of real-valued function on X.

Walking on Banach spaces

 $(2) \Rightarrow (0)$ Let us suppose that B^{**} have a bounded sequence with no weak^{*} convergent subsequence. Then F fails (3) of Theorem 1.22. In particular, that implies $F \nsubseteq \mathcal{B}_1(X)$. Let $(g_n)_n \subseteq B^{**}$, $||g_n|| \leq 1$ be such that: $(g_n)_n$ has no weak^{*} convergent subsequence. Letting $f_n = g_n|_X$, $n \in \omega$. Then $(f_n)_n \subseteq F$ with no pointwise convergent subsequence. By Theorem 1.21, there exists $(f_{n_k})_k$ subsequence of $(f_n)_n$, $L \subseteq X$ and $f: X \longrightarrow \mathbb{R}$ such that

 $f_{n_k} \longrightarrow f$ pointwise

f satisfies the Discontinuity Criterion.

By the classical Goldstine 's theorem

(Δ) f is in the pointwise closure of $\{g|_L g \in ball(B)\}$.

Since the elements of ball(B) are continuous on L, by Proposition 1.19,

$$\ell_1 \hookrightarrow B.$$

 $(1) \Rightarrow (0)$ If $g_n)_n \subseteq B$ has no weak Cauchy subsequence, then $(g_n)_n$ satisfies (Δ) above. Therefore $(g_n)_n$ has a subsequence equivalent to the usual ℓ_1 -basis.

Therefore (0) - (1) - (2) are equivalents.

 $(6) \Rightarrow (0)$ Let us suppose (6) holds. Let F defined as above. Then F contains a strongly countable compact which is non compact Y. So Y fails the condition (a) of Theorem 1.22

$$\Rightarrow F \nsubseteq \mathcal{B}_1(X) \Rightarrow \ell_1 \hookrightarrow B.$$

 $(0) \Rightarrow (6)$ If ℓ_1 embeds in B, then ℓ_1^{**} is weak^{*} isomorphic to a subspace of B^{**} , and $\beta \mathbb{N}$ (the Cech-Stone compactification of \mathbb{N}) is homeomorphic to a weak^{*} compact of ℓ_1^{**} .

Let us consider a family $(M_{\alpha})_{\alpha < \omega_1}$ of infinite subsets of \mathbb{N} such that

 $M_{\alpha} \cap (\mathbb{N} \setminus M_{\beta})$ is infinite (for $\alpha < \beta < \omega_1$)

$$M\beta \subseteq_a M_\alpha$$

For any $\alpha < \omega_1$, let

$$K_{\alpha} = \overline{M_{\alpha}}^{\beta \mathbb{N}} \cap (\mathbb{N} \setminus M_{\alpha}).$$

Then $(K_{\alpha})_{\alpha < \omega_1}$ is a family of clopen in $\beta \mathbb{N} \setminus \mathbb{N}$ with

$$K_{\beta} \subseteq K_{\alpha}, \quad \alpha < \beta < \omega_1.$$

Therefore,

$$\bigcup_{\alpha < \omega_1} (\beta \mathbb{N} \setminus K_\alpha) \cap (\beta \mathbb{N} \setminus \mathbb{N})$$

is a strongly countably compact which is non compact of $\beta \mathbb{N}$.

Before continuing to prove the all equivalences above, we need to recall the following

Definition 1.40. Let C be a convex subset of a topological vector space. A point $x_0 \in C$ is said to be an *extreme point* if $x_0 = \lambda x + (1 - \lambda)y$, for some $x, y \in C$ and $\lambda \in]0, 1[$, then necessarily $x_0 = x = y$. In the sequel, we shall denote by *extC* the set of all extreme points of C.

Proposition 1.41. If X is a metrizable compact convex subset of a topological vector space, then the extreme points of X form a G_{δ} set

Proof. Suppose that the topology of X is given by the metric d. For each $n \in \omega$, let us define

$$F_n = \{ x \in X : x = \frac{1}{2}y + \frac{1}{2}z, \ y, z \in X, \ d(y, z) \ge \frac{1}{n} \}.$$

It is clear that

 F_n is closed, $n \in \omega$;

 $x \in X$ is not an extreme point if and only if $\exists n_0 \in \omega : x \in F_{n_0}$.

Then

$$X \setminus extX = \bigcup_{n \in \omega} F_n$$

which, of course, implies that extX is a G_{δ} in X.

Corollary 1.42. If X is a complete metric space, $C \subseteq X$ is a compact convex set, then

Let us recall from Proposition 1.19 that:

If $(x_n)_n$ is a uniformly bounded sequence of real valued functions on a set $S, \delta, r \in \mathbb{R}$, with $\delta > 0$, and

$$A_n = \{\xi \in S : x_n(\xi) > \delta + r\}$$
$$B_n = \{\xi \in S : x_n(\xi) < r\}.$$

Assuming that $\forall F_1, F_2 \subseteq \omega$ finite and disjoints, we have

$$V(F_1, F_2) = \bigcap_{n \in F_1} A_n \cap \bigcap_{n \in F_2} B_n \neq \emptyset.$$

Then $(x_n)_n$ is equivalent (in the sup-norm) to the usual ℓ_1 -basis.

Walking on Banach spaces

Lemma 1.43. Let B be a Banach space, S be a non empty bounded subset of B^* , $\varphi \in B^{**}$, $r, \delta \in \mathbb{R}$ with $\delta > 0$. Assume that for each weak*-open $U \subseteq B^*$ with $S \cap U \neq \emptyset$,

$$\begin{cases} \exists \xi, \eta \in \overline{co}^{weak^*}(S \cap U) :\\ \varphi(\xi) > \delta + r,\\ \varphi(\eta) < r. \end{cases}$$
(1.1)

Then B contains a sequence equivalent to the usual ℓ_1 -basis.

Proof. By assumption (1.1) and Golstine's theorem, $\exists x_1 \in B$ with $||x_1|| = ||\varphi||$ such that

$$\xi(x_1) > \delta + r, \qquad \eta(x_1) < r.$$

Since $\xi, \eta \in \overline{co}^{weak^*}(S)$, we have

$$A_1 = \{s \in S : s(x_1) > \delta + r\} \neq \emptyset$$
$$B_1 = \{s \in S : s(x_1) < r\} \neq \emptyset.$$

Suppose, by induction, $\exists x_1, \ldots, x_n \in B$ has been defined such that

 $V(F_1, F_2) \neq \emptyset$, for every pair of disjoint sets $F_1, F_2 \subseteq \omega$.

Since $V(F_1, F_2)$ is a weak^{*} open which intersects S, by assumption, there must exist $\xi(F_1, F_2), \eta(F_1, F_2) \in \overline{co}^{weak^*}(V(F_1, F_2))$:

$$\begin{split} \varphi(\xi(F_1,F_2)) > \delta + r \\ \varphi(\eta\xi(F_1,F_2)) < r. \end{split}$$
 By Goldstine's theorem $\exists x_{n+1} \in B, \, \|x_{n+1}\| = \|\varphi\|$:

$$\xi(F_1, F_2)(x_{n+1}) > \delta + r$$
$$\eta(F_1, F_2)(x_{n+1}) < r$$

for every $F_1, F_2 \in \mathcal{F}_D(\omega)$.

Therefore, we have

$$A_{n+1} \cap V(F_1, F_2) \neq \emptyset, \quad B_{n+1} \cap V(F_1, F_2) \neq \emptyset, \ \forall F_1, F_2 \in \mathcal{F}_D(\omega).$$

Therefore, the lemma follows by Proposition 1.19.

Proposition 1.44. Let B be a Banach space such that $\ell_1 \nleftrightarrow B$.

Then, every weak^{*} compact convex subset of B^* is the norm closure convex hull of its extreme points.

Proof. Let C be a weak^{*} compact convex subset of B^* and suppose that

 $C \neq$ norm closure convex hull of $extC = \overline{co}^{\|\cdot\|}(extC)$.

By Hahn-Banach's theorem, there exists $\varphi \in B^{**}$ such that

$$1 = \inf\{\varphi(\xi) : \xi \in C\} > \sup\{\varphi(\xi) : \xi \in extC\}.$$

By Bishop-Phelps's theorem, we can, as well, assume that

$$F = \{\xi \in C : \varphi(\xi) = 1\} \neq \emptyset.$$

So, F is a norm closed face of C; let $K = \overline{F}^{weak^*}$ and E = extK. Notice that $F \cap E = \emptyset$.

Indeed, if $\xi \in F \cap E$, then $\xi \in extC$ and so $\varphi(\xi) < 1$. But, E is a Baire space (see [1] or Appendix 3), then there must exists $n_0 \in \omega$ such that

$$E_{n_0} = E \cap \overline{co}^{weak^*} \{ \xi \in E : \varphi(\xi) < 1 - \frac{1}{n_0} \}$$

contains a non empty weak^{*} open S of E.

We claim that the lemma holds for $S, r = 1 - \frac{1}{n_0}, \delta = \frac{1}{2n_0}$.

Let V is a weak^{*} open such that $V \cap S \neq \emptyset$. Since $V \cap S$ is a weak^{*} open of E, then $\exists x \in B, \alpha \in \mathbb{R}$ such that if $W = \{\xi \in B^* : \xi(x) > \alpha\}$ then

$$\emptyset \neq W \cap E \subseteq V \cap S.$$

Keeping in mind that $K = \overline{F}^{weak^*}$, there must exists $\xi_0 \in W \cap F$.

If $\xi_0 \in \overline{co}^{weak^*}(W \cap E)$, we put $\xi = \xi_0$. Otherwise, there are

$$\xi_1 \in \overline{co}^{weak^*}(W \cap E), \ \xi_2 \in \overline{co}^{weak^*}(E \setminus W)$$

so that

$$\xi_0 = \lambda \xi_1 + (1 - \lambda) \xi_2, \ \lambda \in [0, 1].$$

Now, $\xi_2(x) \leq \alpha$, while $\xi_0(x) > \alpha$. Therefore $\lambda > 0$. Since F is a face, $\xi_1 \in F$. Then,

$$\varphi(\xi_1) = 1, \quad \xi_1 \in \overline{co}^{weak^*}(W \cap E).$$

On the other hand, $\{\eta \in S : \varphi(\eta) < 1 - \frac{1}{n_0}\}$ is weak^{*} dense in S, so $V \cap S$ contains some η such that

$$\varphi(\eta) < 1 - \frac{1}{n_0}.$$

г		т
L		L
		L
L		L

Walking on Banach spaces

Proposition 1.45. Let B be a Banach space containing a subspace isomorphic to ℓ_1 . Then there is a weak^{*} compact subset T of B^{*} such that

$$\overline{co}^{weak^*}T \neq \overline{co}^{\|\cdot\|}T.$$

Proof. Let

 $j:\ell_1 \hookrightarrow B$

be a linear homeomorphism embedding and

$$u: \ell_1 \longrightarrow C([0,1])$$

be a quotient map.

Denote by $\delta(t)$ $(t \in [0, 1])$ the Dirac measure (or point mass measure). Then

$$\overline{co}^{weak^*}\{\delta(t): t \in [0,1]\}$$

consists of all probability measures in M[0, 1], while

$$\overline{co}^{\|\cdot\|}\{\delta(t):\ t\in[0,1]\}$$

consists just of all atomic probability measures.

Let us consider

$$S = u^*(\{\delta(t) : t \in [0,1]\}) \subseteq \ell_{\infty}.$$

Then S is weak^{*} compact convex so that

$$\overline{co}^{weak^*}S \neq \overline{co}^{\|\cdot\|}S.$$

Finally, let $T \subseteq B^*$ be a weak^{*} compact such that

$$j^*(T) = S.$$

Then

$$j^*(\overline{co}^{weak^*}T) = \overline{co}^{weak^*}S$$

and

$$j^*(\overline{co}^{\|\cdot\|}T) = \overline{co}^{\|\cdot\|}S.$$

That implies

$$\overline{co}^{weak^*}T \neq \overline{co}^{\|\cdot\|}T$$

Note that if Γ is a uncountable abstract set, $c_0(\Gamma)$ contains no copy of ℓ_1 , but it is not weak^{*} sequentially dense in $\ell_{\infty}(\Gamma)$. Therefore, Theorem 1.39 above it is not true for a non separable case.

Definition 1.46. Let K be a compact Hausdorff space. A function $\varphi : K \longrightarrow \mathbb{R}$ is said to be *universally measurable* if φ is μ - measurable for every regular Borel measure μ on K. By Lusin's theorem, that means there exists, for each measure μ and $\varepsilon > 0$, a compact $L \subseteq K$ such that

$$|\mu|(K \setminus L) < \varepsilon, \quad \varphi|_L$$
 is continuous.

Definition 1.47. If K is a compact convex space, $\varphi : K \longrightarrow \mathbb{R}$ satisfies the *barycentric calculus* if φ is universally measurable and

$$\int_{K} \varphi d\mu = \varphi(r\mu)$$

for every probability measure μ on K.

 $r\mu$ is called the *resultant of* μ , defined to be the unique point of K such that

$$\int_{K} f d\mu = f(r\mu), \quad \text{for every continuous affine function } f \text{ on } K.$$

Proposition 1.48. Let K be a compact convex set, $\varphi : K \longrightarrow \mathbb{R}$ be a bounded affine function. TFAE

- (i) φ satisfies the barycentric calculus;
- (ii) for every probability measure μ on K, every $\varepsilon > 0$ there exists a compact convex $L \subseteq K$ with

$$\mu(L) > 1 - \varepsilon$$
 and $\varphi|_L$ is continuous

(iii) for every $r, \delta \in \mathbb{R}$, $\delta > 0$, and every probability measure μ on K there is a closed convex $L \subseteq K$ with $\mu(L) > 0$ which is contained either in

$$A = \{\xi \in K : \varphi(\xi) > r\}$$

 $or \ in$

$$B_{\delta} = \{ \xi \in K : \varphi(\xi) < r + \delta \}.$$

Walking on Banach spaces

Proof. $(i) \Rightarrow (ii)$ Since φ is universally measurable, given μ and $\varepsilon > 0$ there exists $S \subseteq K$ compact:

$$\mu(S) > 1 - \varepsilon$$
 and $\varphi|_S$ is continuous.

Let $L = \overline{co}^{\|\cdot\|} S$.

Let $\mathcal{P}(S)$ be the set of all probability measures in M(S) equipped with the weak^{*} topology, and let

$$r: \mathcal{P}(S) \longrightarrow L$$

be the barycentre map. r is a continuous surjection. By hypothesis

$$\varphi \circ r(\mu) = \int_{S} \varphi d\mu.$$

Since φ is continuous on $S, \varphi \circ r$ is continuous on $\mathcal{P}(S)$

 $\Rightarrow \varphi$ is continuous on L.

 $(ii) \Rightarrow (iii)$ Trivial.

 $(iii) \Rightarrow (i)$ Let C be a convex subset of K, μ a positive measure on K. Define

 $\mu_c(C) = \sup\{\mu(L) : L \text{ compact convex}, L \subseteq C\}.$

Such a measure is usually called *convex inner measure* of μ .

Claim: For each probability measure μ , $\delta > 0$, then

$$\mu_c(A) + \mu_c(B_\delta) \ge 1.$$

If not, we can choose increasing sequences of compact sets $L_n \subseteq A$, $M_n \subseteq B_{\delta}$, with:

$$\mu_c(A) = \sup_n \mu(L_n) = \mu(\bigcup_n L_n), \quad \mu_c(B_\delta) = \sup_n \mu(M_n) = \mu(\bigcup_n M_n).$$

Let us define

$$\nu = \mu|_{K \setminus \bigcup_n (L_n \cup M_n)}.$$

If ν is not zero, by hypothesis there exists L compact : $\nu(L) > 0$ and

either
$$L \subseteq A$$
 or $L \subseteq B_{\delta}$.

In case $L \subseteq A$, let $L'_n = co(L \cup L_n) \subseteq A$. Then, L'_n is a compact convex such that

$$\mu(L'_n) \ge \mu(L_n) + \nu(L).$$

In such case, $\mu(L'_n) > \mu(A)$ for sufficiently large $n \in \omega$. Namely, a contradiction.

Since $K \setminus A = \bigcap_{n \in \omega} B_{\frac{1}{n}}$

$$\Rightarrow \mu_c(A) + \mu_c(K \setminus A) = 1.$$

In particular, A is measurable and so φ is μ -measurable.

Let us denote by A(K) the Banach space of all continuous affine realvalued functions on K. Let us consider the natural embedding

$$K \hookrightarrow ball A(K)^*$$
.

Therefore, we can identify φ as an element of $A(K)^{**}$.

Given $\varepsilon > 0$, let us consider $N \in \omega$ such that $\|\varphi\| \le N\varepsilon$. For all $-N \le n \le N$ let

$$C_n = \{\xi \in K : n\varepsilon\varphi(\xi) < (n+1)\varepsilon\}.$$

If μ is a probability measure, we have already shown that

$$\sum_{n=-N}^{N} \mu_c(C_n) = 1,$$

so there are compact convex sets $L_n \subseteq C_n$ such that

$$\sum_{-N}^{N} \mu(L_n) \ge 1 - \frac{\varepsilon}{\|\varphi\|}$$
(1.2)

whenever $\mu(L_n) \neq 0$. Let

$$\mu_n = \frac{1}{\mu(L_n)} \cdot \mu|_{L_n}$$
 and $\xi_n = r\mu_n$,

otherwise, if $\mu(L_n) = 0$, we choose an arbitrary $\xi_n \in L_n \subseteq C_n$. Therefore

$$\|r\mu - \sum_{-N}^{N} \mu(L_n)\xi_n\| = \|r\mu - \sum_{-N}^{N} \mu(L_n)r\mu_n\|$$
$$= \sup_{\substack{\|f\| \le 1\\ f \in A(K)}} \left| f(r\mu) - \sum_{-N}^{N} \mu(L_n)f(r\mu_n) \right|$$

Walking on Banach spaces

$$= \sup_{\substack{\|f\| \leq 1\\ f \in A(K)}} \left| \int_{K} f d\mu - \sum_{-N}^{N} \mu(L_{n}) \int_{L_{n}} f d\frac{\mu}{\mu(L_{n})} \right|$$
$$(L_{n} \text{ are disjoints}) = \sup_{\substack{\|f\| \leq 1\\ f \in A(K)}} \left| \int_{K} f d\mu - \int_{\bigcup_{-N}^{N} L_{n}} f d\mu \right|$$
$$= \sup_{\substack{\|f\| \leq 1\\ f \in A(K)}} \left| \int_{K \setminus \bigcup_{-N}^{N} L_{n}} f d\mu \right|$$
$$\leq \mu(K \setminus \bigcup_{-N}^{N} L_{n})$$
$$= \mu(K) - \sum_{n=-N}^{N} \mu(L_{n})$$
$$\text{by } (1.2) = 1 - \sum_{n=-N}^{N} \mu(L_{n})$$
$$\leq \frac{\varepsilon}{\|\varphi\|}$$

Therefore

$$\left|\varphi(r\mu) - \sum_{n=-N}^{N} \mu(L_n)\varphi(\xi_n)\right| \le \varepsilon.$$
(1.3)

Since $\xi_n \in C_n$, we get

$$\left|\varphi(r\mu) - \sum_{n=-N}^{N} \mu(L_n) n\varepsilon\right| \leq \left|\varphi(r\mu) - \sum_{n=-N}^{N} \mu(L_n) \varphi(\xi_n)\right| \\ + \left|\sum_{n=-N}^{N} \mu(L_n) \varphi(\xi_n) - \sum_{n=-N}^{N} \mu(L_n) n\varepsilon\right| \\ \leq \varepsilon + \left|\sum_{n=-N}^{N} \mu(L_n) (\varphi(\xi_n - n\varepsilon))\right| \\ = \varepsilon + \sum_{n=-N}^{N} \mu(L_n) (\varphi(\xi_n - n\varepsilon)) \\ \leq \varepsilon + \mu(\bigcup_{n=-N}^{N} L_n) \\ \leq 2\varepsilon.$$

On the other hand, by (1.3)

$$\left| \int_{K} \varphi d\mu - \sum_{n=-N}^{N} \int_{L_{n}} \varphi d\mu \right| \leq \varepsilon$$
$$\Rightarrow \left| \int_{K} \varphi d\mu - \sum_{n=-N}^{N} \mu(L_{n}) \cdot n\varepsilon \right| \leq 2\varepsilon.$$

Thus

$$\left|\varphi(r\mu) - \int_{K} \varphi d\mu\right| \le 4\varepsilon.$$

Theorem 1.49. (R. Haydon) Let B be a Banach space and $K = (ballB^*, weak^*)$. TFAE

- (i) B contains no copy of ℓ_1 ;
- (ii) every element of B^{**} is universally measurable as functions on K;
- (iii) every element of B^{**} satisfies the barycentric calculus on K.

Proof. (i) \Rightarrow (ii) Let μ be a probability measure on $K, \varphi \in B^{**}, r, \delta \in \mathbb{R}$ with $\delta > 0$. Let $S = supp\mu$. By Lemma 1.43 there is a weak^{*} open V with $S \cap V \neq \emptyset$ so that

either
$$\overline{co}^{weak^*} S \cap V \subseteq \{\xi \in K : \varphi(\xi) > r\}$$

or $\overline{co}^{weak^*} S \cap V \subseteq \{\xi \in K : \varphi(\xi) < r + \delta\}.$

We have that $\mu(S \cap V) > 0$. Thus *(iii)* of the previous proposition holds with $L = \overline{co}^{weak^*}S \cap V$.

 $(iii) \Rightarrow (ii)$ Trivial.

 $(ii) \Rightarrow (i)$ Let us suppose that B contains a copy of ℓ_1 , let

$$j:\ell_1 \hookrightarrow B$$

be an embedding with ||j|| = 1. Let λ be the product measure on $\{-1, 1\}^{\omega}$ with $\lambda \in \ell_{\infty}$. Finally, let μ be a measure on K such that $j^*\mu = \lambda$.

Since $\ell_{\infty} = C(\beta \mathbb{N})$, then $\beta \mathbb{N} \hookrightarrow \ell_{\infty}^*$.

Choose $\chi \in \beta \mathbb{N} \setminus \mathbb{N}$ and consider $\varphi = j^{**}\chi$.

It is known that χ is not λ - measurable. Therefore, φ is not μ -measurable.

Chapter 2

Appendix

2.0.3 Appendix 1

Theorem 2.1. Let (X, d) be a metric space and μ be a Borel probability measure on X. Then given a Borel set $B \subseteq X$ and $\varepsilon > 0$ there is a closed set $F \subseteq B$ and an open set $G \supseteq B$ such that

$$\mu(G \setminus F) < \varepsilon. \tag{2.1}$$

Proof. Suppose $C \subseteq X$ is a non empty closed set. Let f(x) = d(x, C). Then, f is continuous and $C = \{x \in X : f(x) = 0\}$. Let

$$C_n = \{x \in X : f(x) < \frac{1}{n}\}.$$

For each $n \in \omega$, C_n is an open set with $C_n \supseteq C$ and such that $\mu(C_n) \searrow \mu(C)$. Therefore, every closed satisfies (2.1).

Let \mathcal{B} the family of Borel set which satisfy (2.1).

First notice that, if $(B_n)_n \subseteq \mathcal{B}$ then $\bigcup_n B_n \in \mathcal{B}$.

Indeed, fixing $\varepsilon > 0$ we can pick $F_n \subseteq B_n$ a closed, $G_n \supseteq B_n$ an open such that $\mu(G_n \setminus F_n) < \frac{\varepsilon}{2^{n+1}}$. Let us consider n_0 such that

$$\mu(\bigcup_n F_n \setminus \bigcup_{k=1}^{n_0} F_k) < \varepsilon$$

Therefore we have, $\bigcup_{k=1}^{n_0} F_k$ is a closed set, $\bigcup_{n \in \omega} G_n$ is open with

$$\bigcup_{k=1}^{n_0} F_k \subseteq \bigcup_{n \in \omega} B_n \subseteq \bigcup_{n \in \omega} G_n,$$

and

$$\mu(\bigcup_{n\in\omega}G_n\setminus\bigcup_{k=1}^{n_0}F_k)<\varepsilon.$$

So, \mathcal{B} contains the smallest σ -algebra generated by open sets.

Theorem 2.2. (Ulam)

Let X be a Polish space and μ be a Borel probability measure on X. Then given a Borel set $B, \varepsilon > 0$, there is a compact set $K \subseteq B$ such that

$$\mu(B \setminus K) < \varepsilon.$$

Proof. It is enough to show that there is a compact set K such that

$$\mu(K) > 1 - \varepsilon.$$

Since X is separable, for each $n \in \omega$ there is a family $(B_k(n))_k$ of balls of X such that

$$X = \bigcup_{k} B_k(n), \quad diam(B_k(n)) \le \frac{1}{n}.$$

Without loose in generality, we can assume that the centers of $(B_k(n))_k$ coincide with those of $(B_k(m))_k$. Then

$$\mu(X \setminus \bigcup_{i=1}^{k(1)} B_i(1)) < \frac{\varepsilon}{2},$$
$$\mu(X \setminus \bigcup_{i=1}^{k(2)} B_i(2)) < \frac{\varepsilon}{2^2},$$

and so on.

Conclusion:

$$\bigcap_{n\in\omega}(B_1(n)\cup\ldots\cup B_{k(n)}(n))$$

is totally bounded, and

$$K = \bigcap_{n \in \omega} (B_1(n) \cup \ldots \cup B_{k(n)}(n))$$

is compact. By construction

$$\mu(K) > 1 - \varepsilon$$

52

Appendix 2

2.0.4 Appendix 2

Let E be a locally convex space and let $X \subseteq E$ be a compact convex subset.

Definition 2.3. A real valued function h defined on X is called *affine* if

$$h(\lambda x + (1 - \lambda)y) = \lambda h(x) + (1 - \lambda)h(y), \quad \forall x, y \in X, \ \lambda \in [0, 1].$$

Remark 2.4. Notice that not all all affine function is of the form $x \mapsto f(x) + r$, for some $f \in E^*$, $r \in \mathbb{R}$.

Indeed, consider $E = (\ell_2, weak)$ and $X == \{(x_n)_n \in E : |x_n| \leq \frac{1}{2^n}\}$. Define

$$f: X \longrightarrow \mathbb{R}$$
 by $f(x) = \sum_{n} x_n$

Then, f is affine with f(0) = 0. But the is no point $y \in \ell_2$ such that $f(x) = \langle x, y \rangle$.

Consider \mathcal{A} the uniformly closed subspace of C(X) consisting of all real valued affine functions on X, and let

$$M = E^*|_X + \mathbb{R}.$$

The remark above says us that M is a proper subspace of \mathcal{A}

Proposition 2.5. The subspace M is uniformly dense in the closed subspace \mathcal{A} of all affine continuous functions on X.

Proof. Suppose $g \in \mathcal{A}, \varepsilon > 0$. Let us consider the following subset of $E \times \mathbb{R}$

$$J_1 = \{(x, r) : r = g(x)\}$$
$$J_2 = \{(x, r) : r = g(x) + \varepsilon\}.$$

Those sets are compact, convex, non empty and disjoints.

Using Hahn-Banach separation to 0 and $J_2 - J_1$, the exists a continuous linear functional L on $E \times \mathbb{R}$ and $\lambda \in \mathbb{R}$ such that

$$\sup L(J_1) < \lambda < \inf L(J_2).$$

Let f be the function on E defined by the equation $L(x, f(x)) = \lambda$.

It is clear that f is affine and continuous. Moreover,

$$g(x) < f(x) < g(x) + \varepsilon \quad \forall x \in X,$$

and $f \in M$. Notice that, the fact that f is affine on E, implies that f = h + r, $h \in E^*$, $r \in \mathbb{R}$. Therefore,

$$\widetilde{f} = f|_X = h|_X + r \implies \widetilde{f} \in M.$$

Let us say some more about f:

For each $x \in X$ there exists unique $r_x \in \mathbb{R}$ such that $L(x, r_x) = \lambda$.

Indeed, suppose there are $r_1, r_2 \in \mathbb{R}$ so that

$$L(x, r_1) = \lambda = L(x, r_2).$$

Then, $L(0, r_1 - r_2) = 0$, or $(r_1 - r_2)L(0, 1) = 0$, which implies $r_1 = r_2$.

That shows f is well defined. Moreover f is affine. Indeed,

$$L(tx + (1 - t)y, tf(x) + (1 - t)f(y)) = tL(x, f(x)) + (1 - t)L(y, f(y)) = \lambda$$

$$\Rightarrow f(tx + (1 - t)y) = f(x)) + (1 - t)L(y, f(y)).$$

Finally, let us shows that f is continuous.

If $x_n \to x$, and $|f(x_n) - f(x)| > \delta > 0$. Since

$$L(x_n, f(x_n)) = \lambda = L(x, f(x))$$

we get

$$0 = L(x_n - x, f(x_n) - f(x)) = (f(x_n) - f(x))L(\frac{x_n - x}{f(x_n) - f(x)}, 1).$$

Since $(\frac{1}{f(x_n)-f(x)})_n$ is a bounded sequence in \mathbb{R} , we have

$$\frac{x_n - x}{f(x_n) - f(x)} \longrightarrow 0.$$

Therefore, since L is continuous

$$L(\frac{x_n - x}{f(x_n) - f(x)}, 1) \longrightarrow 1.$$

Thus $f(x_n) \to f(x)$. Namely a contradiction.

54

Appendix 3

2.0.5 Appendix 3

Let E be a topological space and α, β two players, with β the first to move. The game is:

each player chooses a non empty set V in E lying inn the opponent's previously chosen set.

The space E is called α -favorable if α has a winning tactic no matter what β chooses, i.e. α can choose sets V_n such that $\bigcap_n V_n \neq \emptyset$. A mathematical definition can be

Definition 2.6. Let (E, θ) be a topological space. We say that E is α -favorable iff there is a map $f: \theta \longrightarrow \theta$ such that

 $f(U) \subseteq U$ for all $U \in \theta$,

for any sequence $V_1, V_3, \ldots, V_{2n+1}, \ldots$ so that

$$V_1 \supseteq f(V_1) \supseteq V_3 \supseteq f(V_3) \supseteq \dots$$

we have

$$\bigcap_{n\in\omega}V_n\neq\emptyset$$

Example 2.7. (i) Every complete metric space is α -favorable.

Indeed, define a function f such that

$$diamf(U) \le \frac{1}{2}\inf\{1, diamU\}$$

and

$$f(U) \subseteq \overline{f(U)} \subseteq U.$$

Then given $V_1, V_3, \ldots, V_{2n+1}, \ldots : V_1 \supseteq f(V_1) \supseteq V_3 \supseteq f(V_3) \supseteq \ldots$ consider $x_n \in V_n, n \in \omega$. Then $(x_n)_n$ is Cauchy and the limit

$$x = \lim_{n} x_n \in \bigcap_{n} V_n.$$

(ii) Every locally compact Hausdorff space is α -favorable.

In such case, choose f(U) with $\overline{f(U)}$ compact and $\overline{f(U)} \subseteq U$. Then by Cantor's theorem, if V_n are as in the definition, we get

$$\bigcap_{n\in\omega}V_n\neq\emptyset$$

Theorem 2.8. Every α -favorable topological space is a Baire space.

Proof. Suppose E is not Baire, then there are closed nowhere dense sets F_n such that

$$int(\bigcup_{n\in\omega}F_n)\supseteq V$$

for some non empty open set V.

Let $V_1 = V$ and $V_{2n+1} = V_{2n-1} \cap (E \setminus F_n)$.

Then there is no f giving a winning strategy since

$$V \cap (E \setminus \bigcup_n F_n) = \emptyset.$$

Lemma 2.9. Let E be a Hausdorff TVS, $X \subseteq E$ convex and $A \subseteq X$ a convex linearly compact (i.e., any line intersecting A does so in a closed segment).

Suppose $X \setminus A = B$ is convex. Then if $ext(A) \neq \emptyset$ we have

$$ext(A) \cap ext(X) \neq \emptyset.$$

Proof. Let $a \in ext(A)$ and suppose $ext(A) \cap ext(X) = \emptyset$. Therefore $a \notin ext(X)$. Then

$$a = \frac{1}{2}x + \frac{1}{2}y$$
, for some $x \neq y$ in X.

Since A, B are convex, we can suppose that $x \in A, y \in B$. Let $\ell = line\{x, y\}$. By hypothesis $\ell \cap A = [a, b], b \in A$ (because $a \in ext(A)$).

Claim: $b \in ext(X)$.

Suppose not, then $b = \frac{1}{2}b_1 + \frac{1}{2}b_2$, $b_1 \neq b_2$ with $b_1 \in A$. Let $\ell' = line\{b_1, b_2\}$. By construction, $b_1 \notin \ell$ (since $\ell \cap A = [a, b]$).

For $c_1, c_2 \in co\{b_1, b_2, y\}$ lying in separate open half space y - b, let

$$g(c_1, c_2) = \lambda c_1 + (1 - \lambda)c_2$$

so that $g(c_1, c_2) \in span(y, b)$.

Subclaim: We can choose $b_2 \in A$.

Suppose not, the we can find $z_n \in]b, b_2] \cap B$ such that $z_n \to b$. Then $\forall z \in [b_1, y[$

$$g(z, z_n) \to b.$$

If $z \in [b_1, y]$ then $g(z, z_n) \in B$ (since B is convex).

Appendix 3

Then $[b_1, y] \subseteq A$. Since A is linearly compact, we get $[b_1, y] \subseteq A$. Namely a contradiction, because $y \in B$.

Then we can assume $b_2 \in A$. Let c_i be the end point of the segment $[b_i, y] \cap A$, i = 1, 2. Then $c_i \neq y$, i = 1, 2. Therefore we can choose

$$d_n^i \in [b_i, y] \cap B$$

such that

$$d_n^i \longrightarrow c_i, \ i = 1, 2.$$

Let $e_n = g(d_n^1, d_n^2) \in B$.

Then $e_n \to g(c_1, c_2) \in A$. It follows that $g(c_1, c_2) = a$. Or $a \notin ext(A)$. A contradiction.

Theorem 2.10. (Choquet)

Let E be a Hausdorff LCS and $X \subseteq E$ be a convex compact subset. Then ext(X) is α -favorable. In particular, ext(X) is a Baire space.

Proof. Given an open set $A \subseteq ext(X)$, and $a \in A$ we can choose a closed slide V of X such that

$$V \cap ext(X) \subseteq A.$$

Slide means a set of type: $\exists x^* \in E^*, V = X \cap \{x \in E : x^*(x) \le r\}$ for some $r \in \mathbb{R}$.

Define

$$\varphi(A, a) = V \cap ext(X)$$

Of course, we can assume that $\varphi(A_1, a_1) \subseteq \varphi(A_2, a_2)$ whenever $A_1 \subseteq A_2$.

If V_1, V_2, \ldots is a decreasing sequence of closed slides of X corresponding to A_1, A_2, \ldots , since X is compact we get

$$\bigcap_n V_n \neq .$$

But $\bigcap_n V_n$ is convex, closed set and $X \setminus \bigcap_n V_n$ is convex in X. Then, by the previous lemma, we have

$$\bigcap_{n} V_{n} \cap ex(X) \neq \emptyset$$
$$\Rightarrow \bigcap_{n} A_{n} \neq \emptyset.$$

Appendix 3

Bibliography

- [1] Gustave Choquet; Lectures on analysis. Edited by J. Marsden, T. Lance and S. Gelbart W. A. Benjamin, Inc., New York-Amsterdam (1969)
- [2] A. S. Kechris, Classical descriptive set theory. 156, Springer-Verlag, New York, (1995).
- [3] A. S. Kechris, ; W. H. Woodin, Ranks of differentiable functions. *Mathematika*, **33** (1986), no. 2, 252-278.
- [4] K. Kuratowski; Topology, Two Volumes, *Academic Press, New York*, (1966).
- [5] Tertulia Seminar, Catania, (2011).

Bibliography

Contents

1	Preliminaries test so good!				
	1.0.1	The spaces $C_p(X)$ and $\mathcal{B}_1(X)$	7		
	1.0.2	Summertime	40		
2	Appendix		51		
	2.0.3	Appendix 1	51		
	2.0.4	Appendix 2	53		
	2.0.5	Appendix 3	55		