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Chapter 1

Preliminaries test so good!

Let X be a topological space. A C X is called nowhere dense if intA = ().
A C X is called of 1th Baire category is there exist a sequence (A,), of
nowhere dense subsets of X such that

A:UAn.

new

A C X is called of 2th Baire category is A is not of 1th Baire category.

Definition 1.1. A topological space X is called a Baire space is every non-
empty open of X is of 2th Baire category.

Remark 1.2. It is easy to see that

1. A is nowhere dense in X <= A is nowhere dense.
2. A is of 1th Baire category in X <= A is of 1th Baire category.

3. A closed C' subset of a topological space X is 1th Baire category if and
only if it is countable union of closed nowhere dense.

Proof. For 2. it is enough to note that A = AU FrA, (where FrA is the
boundary of A) and intFrA = ().

For 3. it is enough to note that if (K,), is a sequence of nowhere dense
such that C' = J,, K, then

C=(JK.)uFrC.
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Proposition 1.3. Let (X, 1) be a topological space, A an open subset of X.
Then A is 2th Baire category in X if and only if A is 2th Baire category in
(A, 7).

Proof. Easy. m

Theorem 1.4. (Baire) Let (X, 7) be a topological space. Then the following
are equivalent

(i) (X, 7) ia a Baire space;

(11) for every family (A,), of open dense subsets of X, then (), A, is dense
mn X.

Proof. (i) — (ii) Suppose that there exists (A,), of open dense subsets of
X such that (1), A,, is not dense in X. Therefore, there exists an open set A
such that AN, A, = 0. Since, for each n € w, A, is dense, we have that

int(A\ A,) =10

and A\ A, is closed. Then A =(J,(A\ A,) should be an open of 1th Baire
category.

(7i) — (i) Suppose there exists an open of 1th Baire category A. Hence
there exists a sequence of nowhere dense (K,), such that

A=K,
Then A, = X \ K, is a sequence of open dense of X with [, A, not dense
in X (because otherwise we should have A = (). O
Theorem 1.5. (Baire) Every complete metric space (X, d) is a Baire space.
Proof. Easy O
Definition 1.6. Let (X, d) be a complete metric space. A function

f: X—R

is called of 1th Baire category if there exists a sequence of continuous functions
(fn)n € C(X) such that

f(x) =lim f,(z) for every z € X.

We shall denote by Bi(X) the space of all Baire functions on X, equipped
with the pointwise topology.
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Let B an open ball of (X,d) and f: X — R be a function. Let

w(B) = sup f(x) — inf f(x)

zEB zeB

wy(B) is called the oscillation of f in B.
For any = € X, we define

wi() = lim wy(B(x, ).

wy(z) is called the oscillation of f in x.

It is clear that f is continuous at z if and only if wy(zg) = 0. Moreover

}

SEES

Df:U{:I;GX: wy(z) >

coincides with the set of discontinuity points of f and every {z € X : ws(z) >
%} is closed. Then the discontinuity points of a function f: X — Ris a F,
set.

Theorem 1.7. (Baire) Let (X,d) be a complete metric space, f: X — R
be a 1th Baire category function. Then f is continuous except a set of points
of 1th Baire category.

Proof. 1t is enough to show that for every £ > 0
F={reX: wix)>5e}

is nowhere dense.

Let (f.)n be a sequence of continuous functions such that ( f,), converges
pointwise to f. Let

E, = ﬂ {r e X |filz) = fi(x)] <e}.

ij>n
Then
(1) E, is closed for all n € w;
(2) E, C B, for all n € w;

3) U, £, =X.
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Since X is a Baire space, for each closed C' C X, there exist an open subset
Ac of X, ng € w such that

Ac CC N E,,.

That means
|fi(z) — fj(z)] <e VxeAq, i,j>ny.

For j =n and 1 — oo we get

(1) [f@) = fulz)| <e Ve Ac.

Now, for each xy € A¢, there exists I(z9) C A neighborhood of zg such
that

(2) |fu(@) — fulzo)| < e Va € I(xg).
Putting (1) and (2) together, we have

|f(z) — fu(zo)| < e Va € I(xg).

Therefore wy(zg) < 4e. So no points of Ax belongs in F. But C' was an
arbitrary closed such that there exist an open Ax and

Ac CC\F.
That implies F' is nowhere dense [

Using the fact that a F, set is of 1th Baire category if and only if its
complement is dense, we get

Corollary 1.8. Let (X,d) be a complete metric space and f : X — R.
Then

f € Bi(X) if and only if f is continuous at a dense set of points.

Corollary 1.9. (R. Baire, 1899) Let (X,d) be a complete metric space. A
function f on X is 1th Baire function if and only if its restriction to every
closed subset M of X has a point of continuity.

Proof. 1t Dy = Dy M is the set of discontinuity points of f in M, we have
that Dy, is a F, set of 1th Baire category of M. m
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1.0.1 The spaces C,(X) and B;(X)

Definition 1.10. For a compact topological space X, we denote by C(X)
the space of all continuous real-valued functions on X. On such space, we
consider

(i) the norm topology: the topology defined by the norm
1f|l = sup [f(2)];
zeX

(i) the pointwise topology: obtained by considering C'(X) as a subspace of
RX, the space of all real-valued functions equipped with the product
topology. This space is denoted by C,(X) (X in such case could be a
Polish space). A neighborhood of a function f is determined by finite
sequence x1,...,T, of points in X and € > 0 by

Ui(z1,...,2n,6) ={g € Cp(X) ¢ |g(x;) — f(z;)| <e, Vi=1,...,n}

Definition 1.11. A space X is countably compact iff every sequence in X as
a cluster point in X.

For separable metric space this notion is equivalent to compactness, but
in general is weaker.

Theorem 1.12. (Grothendieck) Let X be a compact space and Y C C,(X)
a closed subspace. Then'Y is compact if and only if it is countably compact.

Proof. Assume Y countably compact. Then, for every x € X there is a
positive real number M, such that | f(z)| < M, for every f € Y. Since Y is a
closed subset of [ ], . v [—M,, M,], we have that Y taken inside R¥ is compact
in RX.

Claim Y lies in C,(X).

Suppose there exists a discontinuous function f € Y. Fix ¢ > 0 and
y € X such that the set Z = X \ f~1(f(y) — ¢, f(y) + €) accumulates to y.
By induction, we built sequences {U, } of open sets containing y, (z,), C Z
and (f,,), C Y such that

0) Upy1 C U, for all n;

L) |fu(z) = fu(y)| < 5= for all x € Uy;

(0) U
(1)
(2) z, € U,NZ, for all n;
(3)

3) | fosr(wi) = f(y)| > 5, fori=1,...,n;
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4) [fuly) = fF(Y)] < 55

Assume that U, f; and z; are chosen for all i < n. Then Ug(xy,..., 25, y,5)N
Y is not empty, so pick f,.1 in this set. Then

Fara() = F)] = 1F (@) = F@)] = | fan (i) = fla)] > 5

Therefore f, 1 satisfy (3). Since f,, 41 is continuous at y we can pick an open
neighborhood U, 1 of y such that U, C U, and (1) is satisfied. Finally, for
the definition of Z, we can pick x,41 € U,11 N Z to satisfies (1).

Let 2o an accumulation point of (x,),; in particular z., € (), U,. Let
S = (zp)n U{2s} and define

O Cy(X) — O(S)

by
®(g) = gls

Then ® is continuous. Therefore F' = ®(Y) is a compact in C,(S) C RS
a separable metric space. Since F' is countably compact, we have that F' is
compact. Let g be an accumulation point of { f,|s},. By the construction, we
have that g(z.) is not in the closure of {g(x,)},. Then ¢ is not continuous

at r. Namely a contradiction.
O

Let us recall that, if X is a Banach space, for each z* € X* let D« = K,
and let D = [] ..y« Dy+. Let T : X — D the map defined by

T(x) = (x"(x))zrex+-

Then T is one-to-one embedding of X into D. The weak topology on X is
defined as the topology induced by D via the map 7. Similarly, we can
define on X* a weaker topology, called the weak™ topology, which is induced
by D = [],cx Dz, where D, = K, for each # € X. It is classical, and easy to
prove, that the closed unit ball By« of X* is weak* compact (in the literature
such a result is called the Banach-Alaoglu-Boubaksi).

Remark 1.13. Grothendieck’s theorem in particular implies:

A sequence (fy,), in (C(X), || -|) is weakly convergent to a function f if
and only if f,, converges pointwise to f.

Definition 1.14. A regular Hausdorff space X is called angelic space if

(i) every relatively countably compact is relatively compact;
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(ii) for every relatively compact A of X, then x € A if and only if there
exists (x,), C A converging to x.

We notice that even the space ¢g = C'(aN), where aw is the Alexandroft’s
compactification of the natural numbers, is not an angelic space.

The next result, via Grothendieck’s theorem, tell us that the space C,(X)
is angelic.

Theorem 1.15. (Eberlain) Let X be a compact space and Y be a compact
subset of C,(X). Then for every A CY, if f is in the closure A of A then
there is (fn)n C A converging to f.

The proof follows by the next two lemmas.

Lemma 1.16. Under the assumption of the theorem above, there is a count-
able Ay C A such that f € Ag

Proof. Let us assume that f = 0¢ (x). Fixn € wand . = (21,...,2,) € X™.
Pick f, € Ug(z1, ..., p, %) N A and let

W, is open in X™. Since X" is compact, there exists a finite set F,, C X"
such that
U w.=x".
zEFy,
Let
Ao={f.: € F,, ne€w}.

Ayp is clearly countable. We need to show that ¢, (x) € Ap.

Given € > 0 and x1,...,z,. Increasing nif needed, we can assume that
% < e. We need to find g € Ap such that, fori =1,...,n, |g(x;)] < % Choose
y € F, such that z = (z1,...,2,) € W,. then g = f, works. Indeed, follows
form x; € f, ' (=%, %), for 1 <i <, that | f,(z;)| < +. O

n’n

Lemma 1.17. For every countable Ay C Y, the closure A is second count-
able.

Proof. Let ® : X — R4 be defined by
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Then ® is a continuous map. Therefore, Z = ®(X) C R4 is a compact
second countable space. Let us define

U 0y(Z) — Cy(X)

by
W(f) = fod.
Step 1 ¥ is a homomorphism embedding.

Clearly W is one-to-one.. To see that ¥ is continuous note that
U Ugp) (1o y T €)) = Up(P(21), ..., D), ).
On the other hand, for every basic open set Ug(z1, ..., z,,€) of Cp(Z),
W(Up(21,. .., 2n,€)) = Us(p)(21, ..., 20,6) NV (Cp(2))

for every choice of z; € ®71(z;), i = 1,...,n. Thus, the inverse of ¥ is also
continuous.

Step 2 The range of U is closed in C,(X).

Take g in the closure of ¥(C,(Z)) inside C,(X). For every z € Z, the
function ¢ is constant on ®~!(z). Otherwise, if for some zy, 1, € ®71(2)
the number ¢ = [g(z1) — g(x2)] is positive, then Uy(x1, 22, 5) would be a
neighborhood of g which doesn’t intersect the range of .

Indeed, if f € Ug(x1,2,5) N Range¥, then f= U(f1). But

e = |g(z1) — g(xa)| < [g(w1) — V(fr(z1))] + [V(f1(z1)) — U(fi(22))]
+ 1g(w2) — ¥ (fi(z2))]
= |g(z1) — f1(2)| + 0+ [g(x2) — f1(2)].

Therefore, either |g(x1) — f1(2)| > § or |g(x1) — fi(2)] = 5.

But |g(x;) — f1(2)| = |g(2:) — U(f(2:))|. That implies [ & Uy(wr, 22, 5).
It follows that there is a function f : Z — R such that ¢ = f o ®. We
need to show that f is continuous.

Let 7 the maximal topology on Z for which ® is continuous. Note that f
is 7 continuous because

is open in X for every rational interval I. Since (Z, ) is continuous image
under @, it is compact. But the original topology o of Z (inherited from R40)
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is also compact Hausdorff. Since 0 C 7 we have that o = 7.This shows that
f is continuous. This proves the claim.

It follows that our set Ay is a subset of the compact set
Y nw(Gy(2))

so its closure Aq is a compact subset of the range of W. Since ¥ is a ho-
momorphism it is enough to show that compact subsets of C,(Z) are second
countable. Recall that a compact space is second countable if and only if there
is a countable family of continuous functions which separates its points. Let
D C Z a countable dense of Z. For each d € D let us consider

pa:Cp(Z) — R

given by
pa(f) = f(d)
It is clear that (pg), is a sequence of continuous functions separating the

points of Z.
m

Definition 1.18. Let Y be a topological space and f a real-valued function
defined on Y. We say that f satisfies the Discontinuity Criterion provided
there is a non-empty subset L C Y, r,d € R with 6 > 0 so that

for every non-empty open U C L (open in L)

Cffy)>r+0
dy,ze€ U {f(z)<r

Proposition 1.19. Let Y and f as above and suppose f satisfies the Dis-
continuity Criterion.

Then there is a closed non-empty subset K of Y such that f|x has no
point of continuity relative to the topological space K.

Suppose moreover that there is a uniformly bounded family F of contin-
uwous real-valued functions on'Y so that f is in the pointwise closure of F.
Then F' contains a sequence equivalent in the sup-norm to the usual ¢1-basis.

Proof. Let L,r,é be chosen as in the above definition. Then K = L is the
desired closed subset.

Now, let us suppose that f|, is in the pointwise closure of F|,. That
means

Ve>03lh,...,l,eL, geF : |g(l;)— f(li)l<e, 1=1,...n.

Step 1 There exists (gn)n C F such that, if A, ={x € L: g,(x) >r+6}
and B, ={x € L: g,(x) <r}, then
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(1) A, N B, =0 for each n € w;
(2) for every finite subsets Fy, F5 C w with F; N Fy = () we have

(ﬂneﬂ A”) N (ﬂneFQ Bn) # 0.

For sake of notation, let us denote by A; = A; and —A; = B;.

Indeed, by hypothesis, choose y1,y2 € L such that f(y;) > r+9, f(y2) < r.
Since f is in the pointwise closure of F', there must exists ¢g; € F' such that

Gi(y) >r+9, gi(y2) <.

Trivially, we have (1) and (2) above.
Suppose ¢, ..., g, € F' have been chosen so that

n—1
i=1
for each choice of signs € = (€1,...,€,_1), with ¢, = £1.

Since ﬂ%_ll €iA; is a non-empty open set in L, by hypothesis we can pick
ys,ys € iz, €A; such that

flyn) >r+6, flys) <r
Again, we can choose g, € F' such that

Gn(ys) >r+90, agn(ys) <,

for all 2"~1 choices of e.
It follows that (g,), satisfies the Step 1.
Step 2 (g,)n is equivalent (in the sup norm) to the usual {1 basis.

By multiplying all g,’s by —1 we can assume 7 + § > 0. Let (¢;); be a
sequence of scalars only finite many ¢;’s non zero so that ) . |¢;| = 1.

It is enough to show that there is an s € L such that

o
0 >
DIUBIES

Indeed, by homogeneity we get

)
s lal < 1Y gl <D el
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which means that (g,), is equivalent to the ¢; basis.

Let G={icw: ¢>0}and B={i €w: ¢ <0}. By (2) of Step 1, we
can choose

o e2)e(07) < (00 (00)

If we suppose first r > 0, setting B’ = {i € B : g;(x) > 0} then

Zcigi(x) > cigi(r) > —r Y el =) lal(=r).

i€B i€B’ i€B’ i€B

Similarly

- Z cigi(y) = Z lcil(=r)

ieB ieB
For (x) then we have
@ Sag@ =S lale+ 0+ lal-n)
i i€G i€B

and

b - Zcigi(y) > el(6+ )+ el ().

i€B ieG@
Actually, the inequality (a) and (b) hold for r < 0 too.

Therefore

Z |cilgi(x) — Z |cilgi(y) >
> al@+r)+ ) lal(=r) + > lel@+r) + ) lal(—r)

(2 (2

€@ 1€B 1€B 1€B
ieG i€B
= .

That implies
either E leilgi(z) > é or — E lcilgi(y) > é
i B i 2

In any case, s = x or s = y satisfies the conclusion. O]
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Lemma 1.20. Let X be a Polish space and let (f,), be a pointwise bounded
sequence of real valued functions on X such that (f,), has no pointwise con-
vergent subsequence.

Then, there are N' C w and real numbers r,d with 6 > 0 so that for every
M C N’ there is x € X such that

(1) fu(x) >7r+0 forinfinitely many m € M

and
fm(x) <1 for infinitely many m € M.

Proof. Suppose not. Let us enumerate Q x Q by {(7,, ) }n-

Let My = w. We now choose infinite sets My 2D M; 2 ... 2 M, D ... as
follows: suppose M,,_; has been already chosen, since (1) above is false, then
there exists M,, C M,,_; so that every x € X fails to satisfies (1) for M,, and
(Ty On)-

By a diagonalization argument, we can choose M C, M, Vn € w such
that for every x € X does not exist (r,0) € Q x Q satisfying (1).

But (f,)nenm is pointwise bounded and non converging sequence, then
there exists x € X such that

o <1 '
hnrlne}\?f fm(z) < hrmnes&p fm(2)

Now, simply choose rational numbers r,§ with 6 > 0 such that

liminf f,,,(z) <r <r+3J <limsup f,(x).
meM meM

Therefore z satisfies (1) with M r and 0. Namely a contradiction. O

Theorem 1.21. Let X be a Polish space and let (f,,)n be a pointwise bounded
sequence of real valued functions on X, such that (f,), has no pointwise
convergent subsequence. Then there exists a non empty subset L C X and
a subsequence (fn,)r which is pointwise convergent on L so that the limit
function f satisfies the Discontinuity Criterion.

Consequently, (fn,)x has no 1th Baire class cluster point in the topology
of pointwise convergence.

Proof. Let N',r,¢ as the lemma above.

For every M C N’ let K (M) the closure of the set of all z € X satisfying
(1) of the previous lemma. We have

(a) K(M) is a non empty closed set of X, for each M C N’;
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(b) K(Ml) Q K(MQ) whenever M1 Qa M2 Q N'.

Recall that in a Polish space there is no family {K,, a € w;} of closed
subset, indexed by the first uncountable ordinal w;, with K, C Kz for all
b <a<w.

Therefore, there exists M C N’ so that
K(M'y = K(M) forall M’ C, M.

Indeed, otherwise by a diagonalization argument we could construct (K (M,))a<uw,
so that K(M,) C K(Mp) for all f < a < wy.

Claim VM’ C, M, for all open U C K (M), there are M" C, M’ y,z € U
such that
(3)  lim fu(y) >7+0

neM’

and

Indeed, fix M’ C M. Then K(M') = K(M). By definition, there exists
y € U : fu(y) > r + 0 for infinitely many n € M’. Now choose a subset
My C, M’ such that (f,,(y))nen, converges.

By definition, there exists z € U : f,(z) < r for infinitely many n € M.
Finally, choose My C, M; so that (f,(z))nen, converges.

Now, let (U,), be a base of open sets of K(M). Therefore, we can have
(M,,),, a sequence of infinite sets of w with

M, C, M, for all n € w,
Zny Yn € Uy, for all n € w,

such that the (3) of the claim holds.
As always, by diagonalization argument, let us consider @ C, M,, Vn € w
and let L = {yn, 2, : n € w}. Notice that L is dense in K(M).
Let us define
f(z) = 71116% falz) Yz e L.

Consequently, (fn, )k = (fu)neg, L and f satisfy the conclusion of the theo-
rem. [

Theorem 1.22. (H. Rosenthal)
Let X be a Polish space and let F' be a subset of B1(X). The following are
equivalents
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(1) F is relatively compact;
(2) F is relatively countably compact;
(8) F is relatively sequentially compact.
Moreover, suppose F' satisfies the equivalence, then

(a) every function in the closure of F' is in the closure of a countable subset
of I;

(b) if F is uniformly bounded and (f,)a is a convergent net of F with limit
f, then

[ fo di— [ f dp for all signed Borel measure v on X.

Proof. (2) = (3) By hypothesis, I’ has to be pointwise bounded. Then (3)
holds by the previous theorem.

(2) = (1) Suppose (1) fails. For (2), F' is pointwise bounded; hence the
pointwise closure of F'in X® is compact by Tychonoff’s theorem. Therefore,
there must exists a non 1th Baire class function f in the pointwise closure of
F'. By Baire’s theorem 1.9, there exists a closed non empty subset K of X
such that f|x has no point of continuity relative to K.

Claim: f satisfies the Discontinuity Criterion.

Indeed, for each n € w let
1
A, ={z € K : for every neighborhood U of x Jy,z € U : f(y) — f(z) > —}
n

Since f|x has no point of continuity, we have that

K:UAn.

new

By the Baire category’s theorem 1.4, there is a ng such that A,, has non
empty interior Uy. Let Ko = Uy and 6 = % We have that, for all U C K
open, U N Uy is open in Ky. Then Jy, 2z € U : f(y) — f(z) > 0.

Let (r,)n, = Q and for n € w let us define

B, = {x € Ky : for every neighborhood U of x Jy,z € UN Ky :
f(z) <y,
fly) >ra+6}
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Then

m:U&.

new

Again, by the Baire category’s theorem 1.4, In; € w such that B, has
non empty interior V. Let us consider L = V and r = r,,.Then, we have
that f satisfies the Discontinuity Criterion for L, r, .

Let (U,)n be a base of open sets in L. For each n € w choose y,, z, € U,
such that

flyn) >r+6 flzn) <.

Let Q@ = {yn, 2z, : n € w}. Since f is in the pointwise closure of F' and @ is
a countable set, there must exists a sequence (f,), C F such that

fale) =3 fla)  VgeQ

But @ is dense in L, it follows that f|q satisfies the Discontinuity Criterion.
Moreover, it is clear that if ¢ is a cluster point of (f,), then glg = flo.
Therefore, g has no point of continuity in Q. Thus (f,), has no 1th Baire
class cluster point. That means (2) fails.

Since (1) = (2) and (3) = (2) are trivial, we have that the equivalence
of (1) — (2) — (3).

To show (2) = (a) we need the following O

Lemma 1.23. Let S be a pointwise relatively compact of Bi(X), 0 € S,
s(x) >0 forallse S, v e X.

Then, Yo > 0 dH C S a countable set such that

inf h(z) <6  VzeX.

heH

Proof. Suppose not. Then VH C S 36 > 0 such that
KH)={ze X: h(x)>6 Vhe H}
is non empty. Then we have
K(H,) € K(H;) whenever H, C Hj.

By transfinite induction, we construct (Dga)a<w;, ((8%)new)a<w, C S and
(Hy)a<w, so that

(i) Hy C Hp for a < f < wy;

(ii) D, is dense in K(H,) and D, countable;
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(iii) lim, s¥(z) =0 for all x € Dy;
(iv) Hop1 = Ho U{s%, n € w}.

Let Hy be arbitrary. Chosen H, and D,, we can consider ((Sﬁ)nau)a«ﬂ -y
as in (i47) by a diagonalization argument and using the fact that 0 € S.

Let us consider Hy 41 as in (). If 3 is a limit ordinal, put Hg =, .5 Ha-
the countability of 5 and the countability of every H, insures that Hpg is
countable.

Then there must exists a < wy such that K(H,) = K(Hay1)-

Let f be any cluster point of (($%)new)a<w,- Then f must vanish on D,,.

Ve € K(Hat1), sp(z) >dforalln ew = f(x) >4,

n

Since K(Hy41) and D, are dense in K(H,) we have
f satisfies the Discontinuity Criterion
= [ ¢& Bi(X). A contradiction. O

Proof. of (2) = (a)
Vm € w let
¢m : 81<X) — Bl(Xm)

define by
(@1, am) = [fl)[+ ..+ [ flam)].

Let g € F. WLOG we can suppose g = 0 (otherwise consider {f —¢g: f €
F'}). Therefore, ¢,, is a continuous map and ¢,,(0) = 0. Then ¢,,(F) is
relatively compact of By(X™) and 0 € ¢,,,(F). By Lemma 1.23, there must
exists H,, a countable set of F' such that

L wt{(6ah)(y), hE Hu) Wy X7

=0¢ | H,.

mew

To show (1) = (b) we shall need of the following
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Lemma 1.24. Let X be a compact Hausdorff space and let us denote by K
the unit ball of M (X)) (the space of all bounded signed Borel reqular measures
on X ) endowed with the weak* topology relative to C'(X).

Let us define
T:bd—By(X) — K®
by
750 = [ f dn
X

where we are denoting by bd — B1(X) the space of all 1th Baire class which
are bounded.

Then the range of T is a closed subset of bd — By (K).

Proof. 1t enough to show that T'(bd — B1(X)) consists of all functions in
bd — By (K) which are antisymmetric and affine.

Obvious all functions in T'(bd — B (X)) are antisymmetric and affine. Let
us suppose f € B1(K) bounded, antisymmetric and affine. Then there exists

an element f € M(X)* = C(X)* such that
flx =1

Claim: [ is of 1th Baire class <> ﬂK = f is of 1th Baire class.

Suppose we have already proved the Claim, then f| x = [ is of 1th Baire
class. Therefore, f € M(X)* is of 1th Baire class.

Then there exists (f,,), € C(K) such that

limp, fu) = (u. ) Vi€ M(X).
But

cho) = [ vpe &

By the Lebesgue convergent’s theorem

e B(X) () = [
or
f=T(h).
Let us prove the Claim above.

Actually the Claim holds in a more general setting.
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Let X be a Banach space, K = (Bx«,weak*), f € X**. Then
f is of 1th Baire class <= f|x is of 1th Baire class.

Subcalim: Let X be a subspace of Y and G € X** C Y** If (G is of 1th
Baire class in Y** then (G is of 1th Baire class in X**.
n—oo

Indeed, assuming ||G|| = 1. If there exists (b,),, C Y such that b, — G
weak* (or pointwise). We show that

d(Bx,@{bN, bN—f—la - }) = 0, VN € w,

or it is the same to say that we can choose (z,,), € X and b, convex combi-
nation of b,’s such that
|zn — bn]] — 0.

Indeed, since b, — G weakly* (on Y*), then
x, — G weakly* (on Y*) and for Hahn-Banach

r, — G weakly* (on X*).

If there exists N € w such that d(Bx,co{bn,bn+1,...}) > 0, by the
Hahn-Banach separation

VT ¢ sup fx) < inf f(by).

rEBx

By Goldstein’s theorem

GUNI < sup [£(a)] < int f(b)) < lim f(by) = G(J)

rEBx

Now, suppose f € C'(X)*™ is such that f|x is of 1th Baire class.

Let us denote by suppu = {x € X : |u|(U) > 0 VU open neighborhood of =}
with g € M(X). For S C X let us denote by

P(S) ={pne M(X): ||ul| =1, suppp € S}.

Then, P(S) is a weak* closed of K.

Suppose f is not of 1th Baire class on (C(X)*, weak*). We want to show
that 3pu € M(X) such that

f|P(suppp) has no point of continuity in P(suppp).

Let us consider
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Pa(S) the set of all purely atomic member of P(S). Notice that it is
weak* dense in P(S);

P,.(S) the set of all p-continuous members of P(S).

If either Y = Py(S) or Y = P,(S) then Y is convex and

[ flloe = Supl/f du| YfeC(sS).
vey

Obvious X — K = Bj(x), then f|x is of 1th Baire class.
Let us define g € C(X)™ by

o) = [ 56 dut©). Ve ().
Of course, g € B1(C(X)*). Then,

h=f—g¢€Bi(K).

Let us show that h = 0.

By definition of h we have that h(p) = 0 for all u € Py(X).

If h # 0, then Jv € P(X) : h(v) # 0 (we can suppose h(r) > 0). By the
Radon-Nikodym’s theorem, we have that

P,(X) = Li(v)

Then
h|p,(x) is a bounded linear functional on P, (X).

By Riesz representation’s theorem, there exists a bounded Borel measurable
function ¢ such that

h(\) = /qs d\ VA e P, (X)
In particular h(v) = [ ¢ dv > 0. Which implies
/qﬁ+ dv >0
Let ¢ > 0 such that v(E) > 0 where E = {£: ¢(§) > c}. It follows that

if A e P(X): A(X\E):0:>/¢d)\:/d)d)\20.
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Let us define p € P(X) as
v(BNE)
B)= 2
WB) ==
Then h(X) > ¢ for all A € P,(X).
Let S = suppp. Then

h > con P,(X) (which is weak*-dense in P(X)), and

h =0 on Py(X) (which is weak*-dense in P(X))

= h|p(s) has no point of continuity in P(S). But P(S) € K and h|g €
Bi(K). Namely a contradiction. O

Proof. of (1) = (b)
F C By(X) is relatively compact.
If X is compact, by Lemma 1.24, T'(F') C bd—B;(X) is relatively compact.

If X is not compact, let (f,) € F be a net such that f, — f, ¢ =
sup, [ fo| and p € M(X).

By Ulam’s theorem, given ¢ > 0 3K C X compact : |u[(X \ K) < e.

Therefore, the restriction map B;(X) — B;(K) is continuous (easy!).
Then F|k is relatively compact in B;(K). By all considerations above

/Kfad,uﬁ/deu.

insup | [ (7, = 1) dpl < sy [ 17, — 1] d < 2e=
a X\K

[0}

Consequently,

Since £ > 0 was arbitrary, we have (b). O

Definition 1.25. A topological space (X, 0) is called Cech-complete if it can
be considered as a Gy subset of a compact Hausdorff space; i.e., there exists

a compact Hausdorff space Z and a countable family of open (A,), in Z so
that X =, A4,.

Remark 1.26. (i) Any locally compact Hausdorff space is Chec-complete
(being open in its one-point compactification);

(ii) any complete metric space is Cech-complete (being G in its Cech-Stone
compactification).
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Before to enunciate the main result of this section, we shall need a bunch
of lemmas

Lemma 1.27. Let X be a Cech-complete space and A a family of pairs
(A, B), with A, B C X are open’s.

Suppose there is Y C X non empty so that A is weakly dense overY (i.e.,
VEo,...,E, C X open’s : ExNY #0, k=0,...,n, then (G, H) € A such
that GNE,NY #0, HNE;NY #0 foralli=0,...,n).

Then there is (G, Hp)n € A and a compact set K C X such that

EN()Gun ()| Hi#0 VICuw.

nel new\Il

Proof. By hypothesis, there is a compact Hausdorff space Z and (A,,), open
subsets in Z such that X = . An.

Let
B={(G,H): G,HC Zopen's, (GNX HNX) e A}.

We have that B is weakly dense over Y.

Claim: There exist {(G,,H,) : n € w} and open sets Cpg in Z such
that

(i) Cpg is defined for pairs (P, Q) which is a partition of {0,...,n}, for
some n € w, and Cpg is a non empty open set in Z such that

CpoNY # 0 and
Crq € A N Mpep Gn N Nypeg Ha-
(ii) If P C P and Q C @', then Cp o C Cpg.
As Y is non empty, by hypothesis there is (Gy, Hy) € B such that
GoNY #0  HyNY # 0.
Choose a non empty open sets Cyoy.9, Cp {0y in Z such that
CipoNY #0  Copip NY #0.

and
Cror0 € Go N Ao, Co oy € Ho N Ay.

Suppose that G;, H; have been chosen for all 7 < n and Cpg has been found
for each partition (P, Q) of {0,...,n}.
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Each Cpg is a non empty open set in Z such that CpoNY # (. As B is
weakly dense over Y, 3(Gy1, Hyv1) € B :

Gni1NCpoNY #10, H,i1NCpoNY #10,

for every partition (P,Q) of {0,...,n}. Now, for every partition (P,Q) of
{0,...,n} choose Cpyni1y, and Cpguin+1y two open sets such that

Crufn+1r,@ NY # 0, Crount1y NY # 10

and
Crutn+11,0 € Grg1 N A, Croun+1y © Hpp1 N Apyr.

Let us define

K = ﬂ U{m . (P,Q) is a partition of {0,...,n}}.

new

Then K is closed in Z and then compact. For I C w, let
P,={iel: i<n}tand Q,={i¢I1: i<n},

(P, Q) is a partition of {0,...,n}. Since Z is compact

@7& meangKﬁﬂGnﬂ m H,.

new nel new\I
Finally, as Cpg C A, for each partition (P, Q) of {0,...,n}, we get
K CX.
O

Lemma 1.28. Let X be a reqular Hausdorff space which is sequentially com-
pact and such that

(C) if AC X, x € A, there exists a countable set Ay C A: x € A.

Let (xy,)n be a sequence in X and (I,,), be a decreasing sequence of infinite
subsets of w such that

(x;)ier, have a common cluster point x.

Then there is an infinite set I C w: I\ I, is finite, for alln € w, and x is a
cluster point of (;)icr-
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Proof. Let

F = {Lir? x; : I is an infinite set, lir? x; exists and I\ I, is finite Vn € w}.
1€ 1€

Claim: z € F.
For a neighborhood U of x, let J ={i € w: z; € U}. Then JN 1, is a
infinite set.

As (I,,), is decreasing, there is an infinite K C J: K \ [,, is finite Vn € w.
Now, X is sequentially compact. Therefore, there is an infinite I C K such
that

z = lim x;
icl

exists.
We have z € F N U. Since X is regular, z € F.

By hypothesis (C'), there is (z,,)m C F such that z € {z,: m € w}.
Every

Zm = lim z;
i€Jm

where J,, is infinite: J,, \ I, is finite Vn € w.
Let I =, (I, N Jy). Then

new

I'\ I, is finite, and J, \ I is finite, Vn € w.

Follows that z,, is a cluster point of (x;);. But the set of cluster points of a
sequence is always closed. Thus, z is a cluster point of (x;);cs. O

Lemma 1.29. Let X be a Polish space, (x,,), a sequence in Cp(X):
(i) {x, : n € w} is relatively compact in By(X);
(ii) 0 is a cluster point of (xy), in the pointwise topology.

Let W C X be a non empty closed set and € > 0. Then there is a non empty
relatively open U C W and an infinite J C w:

(a) 0 is a cluster point of (x;)icy;
(b) limsup,c; |z;(t)| < 2e forallt € U.
Proof. VI C w infinite, let

A(I) = {cluster points of (z;);er} C Bi(X).
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Suppose the Lemma fails. If
Gi={te X: |z(t)| <e}, Hi={teX: |z;t) > 2¢},

let
A={(G;,H;): i € w}.
Claim: A is weakly dense over W.
Indeed, let Ey, ..., E, C X open sets with E; "W #£0,i=0,...,n.
Let s, € E;NW,1=0,...,n and

I={icw: |z;(s)| <e, Vr <n}.
Then, by (i) above, 0 € A(I). Let
Jo={iel: |z;(t) <2, Vte E,.NW}.

By our hypothesis, 0 ¢ A(J,) for any r < n. Since

AU ) = A,

r<n i<n

it follows that I # J, -, J-. If i is any point of I \ |, ., J,, we have

n>r r<n

GiNE.NW#0 (asiel) H,NE.NW #0 (asi & J,.).

By Lemma 1.27, there exists K C X compact such that

EN(\Gun () Ha#0, VICw.

nel new\Il

In particular, there is a sequence (y,), in {z;, i € w} such that, for every
I Cuw

{te K: |y.(t)] <e, Ynel, ly,(t)| >2eVnew\ I} #0.

It follows that (|y,|), can have no convergent subsequence (as well as (y,)r)-
But (y,)n is a sequence in {z; : i € w} which is relatively compact. By
Theorem 1.22, it is relatively sequentially compact in B;(X). A contradiction.

[

Lemma 1.30. Let X be a Polish space, (x,), be a sequence in Cy(X) such
that

(i) {x, : n € w} is relatively compact in By(X);
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(i1) 0 is a cluster point of (T,)n.
Then there is an infinite set I C w such that

limsup |z;(t)| <e, VieX
iel

and 0 is a cluster point of (x;)ier-

Proof. For each I C w, let

U(I) =int{t : lim sIup |z ()] < e}
ic

and A(I) the set of all cluster points of (z;)c;-

Note that, if I\ J is finite = U(I) D U(J).

Let (Vi)x be a base of X and let us start with Iy = w. Given ), such that
0 € A(I). Then, if there is an infinite I C I}: 0 € A(I) and V;, C U(I), take
I+ = 1. Otherwise choose [ 1 = Ij.

Therefore, the sequence (I ) is decreasing: 0 € A(Iy) for all k € w.

By Lemma 1.28 for the set {z;, i € w} there is an infinite / C w such
that

0 € A(I) and I\ I} is finite Vk € w.

Fix J C I infinite such that 0 € A(.J). Then, U(J) D U(I).

If U(J) # U(I), there should exists k € w such that V, C U(J) but
Ve £ U().

Since J \ I is finite, it follows that J N I} is infinite in I: 0 € A(J N I)
and Vi, C U(J N 1) (for construction of Ij).

Therefore, Vi, C U(I11). But in this situation I \ I, has to be finite, so
that

Vi, CU(Ix41) C U(I),

which contradicts the assumption above.

What we have is:

(a) UJ)=UI) YJCI: 0eA.).

Claim: U(I) = X.
Suppose not. Let W C X \U([) be a non empty closed set. By the Lemma
1.29 applied to (z;);er there exists J C I: 0 € A(J) and

limsup |z;(t)| < e, Vt € U, where U is some open of W.
icJ
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Thus
limsup |@;(t)| <e, Vt e UUU(I)
ieJ
and
U(J) CintlUUU(I)] # U(I).
Which contradicts (a) above. O

Corollary 1.31. Let X be a Polish space, (x,,), be a sequence in C,(X) such
that

(i) (xn)n is relatively compact;
(11) 0 is a cluster point of (T,)n.
Then, there is a subsequence of (x,), converging to 0.
Proof. By Lemma 1.30, for ¢ = 2% dI; Cw, k € w so that

1

= VteX, kew.

lim sup |z;(t)] <
i€l 2

Notice that we can always choose (I} ); decreasing. Therefore, let us consider
I Cw: I\ I is finite Vk € w. that implies

limx; = 0.
icl

Here we are ready to enunciate the main result

Theorem 1.32. (Bourgain-Fremlin-Talagrand)
If X is a Polish space, then B1(X) is angelic.

Proof. Actually, Theorem 1.22 says us that every relatively countably com-
pact is relatively compact in B (X).

We need to show the other condition of angelicity.

Let us consider A C B(X) a relatively compact, z € A. By Theorem
1.22(a), there is a sequence (z,,), C A such that z is a cluster point of (z,,)s,.
Let us define
p: X —R¥

given by
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forallt € X and n € w.
1. ¢ is a Borel map.

It is enough to show that, if n;,...n; € w, then

o '{feRY: |f(n)| <o, i=1,...,k}

is Borel.

But this set coincides with
k
{teX: [pt)(n)l <o, i=1,... k} = [{t€X: |xn| <o}
=1

Since each x,, set in Bi(X), we have that {t € X : |x,,_1] < o} is a Gs set
(the inverse imageof an open set through a 1th Baire class function is a Gj).
Therefore, ¢ is Borel.

2. Let us consider {(z,y) : ¢(x) =y} C X x R¥. Letting

h(z,y) =y — p(z)]

we have that h is a Borel map. Since

{(z.y): o(z) =y} =h"(0)

we have that L = {(x,y) : ¢(z) =y} is Borel in X x R¥.
Let us denote by
P: X xRY—R"

the second projection. Since Y = (X)) coincides with P(L), we have that YV
is an analytic set. From what we have seen in the Tertulia seminar [5], there
must exists a polish space Z and a continuous surjection

V:Z—Y =¢(X) TR

Set
y(u) = u(0)
Yn(u) = u(n +1),
as elements of RY.

We see that y is a cluster point of (y,), in RY and every subsequence
of (yn)n has a convergent subsequence (this because A is relatively sequen-
tially compact in B;(X)), then every subsequence of (z,), has a convergent
subsequence).
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Let

z=yoy

Zn = Yn O Y
as element of RZ. Therefore, z is a cluster point of (2,), in RZ. Notice that
(2n)n € Cy(Z) (since each y, is continuous projection coordinate and v is
continuous). Moreover every subsequence of (z,), has a convergent extract.
By Rosenthal’s theorem (Theorem 1.22), {z,, n € w} is relatively compact
in By(Z). We also have z € C,(Z). Let us apply Corollary 1.31 to (z, — 2),
to get a subsequence (z,),er convergent to z. By construction, first we have

limy, =
'y (Y
and secondly
limz, =z
nel
as required. O

Let us give another characterization of 1th Baire class function in the
same spirit of the Baire characterization theorem.

Lemma 1.33. (Talagrand)
Let X be a complete metric space, v € RX. Then x € By(X) if and only if
x|k € Bi(K), for every compact K C X.
Proof. Of course, one way of it is trivial. All we need to show is that if
x|k € Bi(X) for every compact K C X, then x € B;(X).

By Baire characterization theorem (see Theorem 1.9), it is enough to

show that for every closed M C X, f|y has a point of continuity relative to
M. For a, 5 € R with a < f3, let us denote

S(a)={te M: z(t) < a}, TB)={te M: x(t) > p}.

Therefore, it is enough to show that whenever o < j3,

intS(a) NintT(8) = 0,

or it is the same to say that: x € By(X) if and only if for every closed closed
set M C X and a < f3,

one of M N S(a), M NT(S) is not equal to M.

Suppose = & B;(X). Then there is a non empty closed set M C X, a < 3
reals, so that

S(a), T(P) are dense in M

By induction, we can choose a sequence of finite sets A,, C S(a)UT(/3) such
that
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(i) Ao # 0;
(i) A, Apst, Vn € w;
(iii) Vt € A,41, Is € A, such that d(t,s) < 5x;

(iv) Vs € A, 3t € A, 41 such that d(t,s) < 5= and |z(s) — z(t)| > B — a.

Since X is a complete metric space, then

K=|]A,

new

is compact (because it is complete and totally bounded).

Hence K NS(a), KNT(S) are dense in K. That implies z|x & B1(K). A
contradiction. O

Lemma 1.34. (Talagrand)
Let X be a complete metric space. Then

x € By(X) if and only if for every non empty open U C X, € > 0 there
is a non empty open V- C U such that diam(z(V)) < e.

Proof. If © € B1(X), we already know that the points of continuity of z is
dense in X. Therefore, if we fix t € U and consider the continuity condition,
we have that the condition is trivially satisfies.

Suppose we start with the condition, but = & By (X).
Thus, we can consider E, F' C R closed and disjoint such that

if U =intz='(E) Nintz=(F) # 0
then U Nz ' (F) and U Nz~ ' (F) are dense in U.

By our condition, we can choose a sequence (V},),, of non empty open sets
in X such that

(i) Vo C U;
(ii) Vi, CV,_q, for all n € w;
(ili) diam(z(V,)) <e, for all n € w;

Now,

VoNna Y(E) #0, VoNa (F) # 0.

Let s, € V,Nz Y (E) and ¢, € V,,Nz~ ! (F) for all n € w. Therefore, (z(s,))n
and (z(t,))n are two Cauchy sequences in R which must have a common limit
in £ N F (which contradicts that F and F' are disjoints). O
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Let us fix some notation.
For any sets A, X and S C A x X let

m(S)={reA: e X (x,t) € S},

Sx)y={te X : (z,t) € S},
SHt)y={r e A: (z,t) €S}

Let ¥ and B two o-algebras of subsets of A and X respectively. 3 é B
will denote the o-algebra generated by {E x F': E € 3, F € B}.

Lemma 1.35. Let (A, %, 1) be a complete probability space and X be a com-
pact metric space. Let B be the o-algebra of Borel sets in X. Then

A
m((S)ex, VSeXw®hB.
Proof. Of course, we can write S in the form
S = U{mnE(Mn X F¢|n . gb S (,dw},

where ¢, = (¢(0),...,¢(n)), By, € X and Fy, are closed in X.

Without loss in generality, we can assume, as well as we do, that

E¢"n+1 g Ed"n’ F¢|n+1 g Fd"n? VH € w.
Therefore,
m1(S) = U{mi(MuEy), X Fy,): ¢ € w”}
= U{Nym1(Ey), X Fyp,) 0 ¢ € w}
=U{N,Ey, : ¢ €w},
which lies in X. 0

Lemma 1.36. Let (A, 3, u) be a complete probability measure and (X, d) be
a compact metric space.

Let S and T subsets of A x X such that
(*) S7Ht), T~ (t) € 2, for allt € X;

(**) for every x € A and every non empty closed F' C X at least one of the
sets

FnS(xz), FNT(x) is not equal to F.
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Then, for any & > 0 and any non epty open U C X there is a non empty
open V- C U such that

w(STHs)) + u(T7Ht) <1+36, Vs,teV.

Proof. Let us fix (V,,), be a base of X.

Case 1. S,T € X ® B.
Let us define (V¢)ecw, € A x X as follows:

Uy =Ax X;
for a given £ < wy even, let
Wepr = {(2,1) : w € A, t€S(@)NT()},
Vo = {(2,1) : w € A, t € T(2) N Ve(a)};
and for limit ordinals £ < wq let
Ve = ﬂn<§ Wy
Then we have
(a) We(x) is closed in X, Vo € A;
(b) W C W, whenever n < £ < wy;

(€) Weio(x) C Ve(z) if Ue(z) # O (by our hypothesis on S and T').

Claim 1. ¥, € ¥ é B.
Of course, for £ = 0 it is clear.
Suppose the Claim holds for &, then

Uerr = {(z,t) : t € S(z)NYe(x)}
= ﬂ{(m,t) . either t & Vi or Vi, N S(x) N We(z) # 0}
k

=(NI(Ax X\ V) Um(Ax Vi nSNTe) x X].

A
By the previous lemma, we have that Ve ; € ¥ ® B. Similarly for Wey,.
Now, for all £ € w, £ < wq, let

Ek{ = T ((A X Vk) mSﬂ\Ifg)
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Notice that, for fixed k € w, (Ej¢)e<w, 1 a decreasing sequence in 3.
Since p is a probability measure,
In <wi: p(Ere) = w(Ery V€=

Set
Ar= A\ (Bin \ Brpra) .

kew

Then u(A\ A;) = 0. Let us fix x € Ay, we have
{kew: e By t={kcw: v € E,}
So
U,p(x) ={te X : Vk €weither t €V}, or x € E},,} = ¥, 3(2).

By (¢) we have that U, (z) = 0.

What we have is that: there is a countable ordinal 79 = n+1 and A; C A
such that
WA\ A;) =0 and U, (x)=0, Vo € A;.

Now, for all n € w, & < wy, let us define
1
Cue={(z,1) € Ve d(y, Yerr) 2 50}

Claim 2. &, € ¥ ® B.
Let (t,), be a countable dense subset of X. Then,

1
q)n,gijg\U{R<Oé,6,]€)l a76€@7 Oé+ﬁ<2—n, ]CELU}
where

R(a, B,k) ={(z,t) : d(t,tx) < B, Nalte) N Weia(z) # 0}
= T (A X Na(tk) N \IJ£+1) X Nﬁ(tk)

and
No(ty) ={t e X : d(t,ty) < a}.

Therefore, @, € X <§> B, for all n € w and & < wy.
Moreover, each ®,, ¢ is closed.
If n < & then d(Pp,¢(2), Pry(z)) > 55 for alln € w, z € A

Also, we have
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Weiq(2) is closed;

Unew q)nyﬁ = \Ilﬁ \ \Ij@rl? f < Wi}
Uncuee @ = (A % X)\ U, € <,

nEw,neg ~ N

Now, let us consider

A
¢, = U (I)n,562®87
£<mno
remembering that 7y was a countable ordinal.
Let us define

Bz, 1) = 1, if (z,t) € W \ Weyq, where € is odd, € < np;
nY = 0, otherwise.

Therefore, h is X é B measurable. We know that, if x € A;, t € X Kipping
in mind the definition of 1y, t & ¥, (z).

Then, there exists some & < ny: t € We(z) \ Vepq(z) (by hypothesis).
If € is even, h(x,t) = 0 and t ¢ S(x) N Ve(x), so (z,t) & S.

If ¢ is odd, then h(x,t) =1 and t ¢ T(x) N We(z), so (z,t) € T.
What we have is, Vo € A, t € X

xs(z,t) < h(z,t), xr(z,t) <1 —h(zx,t).

By definition of h, for any x € A, n € w, £ < wy, h(x,t) is constant for
te D,e(x).

Therefore, if we denote by h,(t) = h(z,t), h, is continuous on ®,(z) =
Ug<ny Pre(z) (because for fixed n, z, ®,¢(x) are isolated).

Let B = ballC(X). Let us define

A, ={(z,2) € Ax B: z(t) = h(z,t), Vt € D,(x)}.

By Tietze’s theorem (i.e., every continuous function on a closed subset of a
normed space can be extendible over the whole space), A,,(x) is never empty
and clearly it is closed (here, for once, we are giving on B the uniform norm
topology, so B is a Polish space).

Claim 3.
A, A— F(B)

is a multifunction measurable; i.e., for every open V subset of B {x € A :
A(z) NV £0} e X
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To show that, it is enough that {z € A: p(z, A,(z)) < €} is measurable,
for all z € B,e > 0 (where p is a metric on B).
But,
{z: p(z,\p(z)) <e}={ze€A: |2(t) — h(z,t)| < e, Vt € D, ()}
= A\ 7 (P, N{(z,t) : |2(t) — h(z,t)| > €}) € &,

because h is ¥ (§> B measurable and ®,, € Q/%) B.
By the Kuratowski-Ryll-Nardzewski’s theorem (see [5]),

d\ : A — B measurable function such that

() € Ap(z), Vz e A.
Set fu(z,t) = A\ (z)(t) : Ax X — R.

Then f, is measurable in the first variable and continuous in the second
one; also, |fn(z,t)] <1,Vor € At € X.

By construction, f, = h on ®,. Since X = J, o, Pn(z), for z € Ay, we
have
h(z,t) =lim f,(z,t), Vre A, teX.

Set

%®=/nmwww.
Then z, € Cp(X) and

1i£n zn(t) = /h(x,t) du(x), Vte X;

that is because Vt € X, lim,, f,,(x,t) = h(x,t) for almost = € A.

Let us consider U the open of the enunciate of the Lemma. Therefore,

U=|J{teU: |zm(t) — z.(t)] <6, Vm > n}.

new

By Baire’s theorem (see Theorem 1.4), there is ng € w such that
G=int{t e U: |zn(t) — z,(t)| <9, Vm > n} is not empty.

Let V' C G be an open set such that |z,(s) — z,(t)| <0 Vs, t € V.

Therefore,
‘Zm(S) - Zn(t)l < (57 vs7t € V7 m > n.
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Since, for x € Ay, s,t €V
xs(z,s) + xr(z,t) < h(x,s)+ 1 — h(z,t),

we have

u(S71 () + (T (1) < 1+ / Wz, s) du(z) - / Wz, 1) du(z)

=1+ 1lim[z,,(s) — 2, (t)] <14 36.

m

Case 2. 5,7 C A x X general sets.
Suppose no such V' can be found. Let I ={k € w: V, NU # 0}.
Then we can consider, for each k € I, points sg,t, € Vi, N U such that

p(S™ (k) + (T () > 1+ 36.

Let
SO = U S_l(Sk) X {Sk}, TO = UT_l(tk) X {tk}

kel kel

Then Ty, S € £ ® B, Sy € S and Tj C T.
By hypothesis and Case 1., 3F C X, x € A such that

If V C U is open, then

sup 1u(Sy " (s)) + sup p(Ty ' (£)) > 14 3,
seV teV

which clearly contradicts Case 1. [

Proposition 1.37. Let (A, 3, u) be a complete probability space and X a
complete metric space. Let

fiAXX —R

be a bounded function, maesurable in the first variable and of 1th Baire class
in the second one.

Then,
A(t) = / F(a,t) du) € By(X),
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Proof. By Lemma 1.33, we may assume that X is a compact metric space.

By Lemma 1.34, we need to show that: Ve > 0 and non empty open
U C X there is a non empty open V C U:

diam(z(V)) < e.

Since f is bounded, we can assume 0 < f(z,t) <1, Vx € At € X.
Let n € w be such that 3n + 1 < en?. Let us set

S ={@): fe) <=} T={@1): flat) >}

For each r € w, S,, T, satisfy the hypothesis of Lemma 1.36; indeed, V& €
A, the map t — f(z,t) € B1(X) (see the proof of Lemma 1.33).

So, by induction, we can choose non empty open sets (V}.),. such that
(i) Vo="U;
(ii) Vi C Vi
(i) p(S7H(s)) +u(T 5 () <14+ Lforall s,t € Vi, 0<r <n.

Now, s,t € V.1 then

W) S oulTh @) 2 [ fet)— - dute) = 5(0) -
and ) )
(2) Z 5[1 — (S, ()] < 2(s) + o

To see (1), note that, since T, %, (t) € T=(t) and A = T, '(t), we have

fle) = <0, Ve € T 0\ T7 1),

Vo e Ty () \ Ty (1),

SRS
S|

f(l‘,t) -

and so on, and since

T () = (T, (O \ T4 (1) U T (1),

<

we get

oo Jan=[ s+ | flat) = a

Ty (O\T, ) (1) n
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<0+ (T O\ T () + (T O\ T (0) +

- %M(Tfl(t)) +o %/L(Tn_—f}l (1))
=D w(TZh ().

The reader can figure out (2) similarly.

Therefore,
0) — () < 3 (TR (0) + = S0 (1 (S )]+
= ST () (S )~

r<n
2 1 1
by (222 < —4 — 1)— <e.
(by (iif) << +~(n+1)- <<
O

Theorem 1.38. (Talagrand)
Let X be a complete metric space, A C B1(X) a compact uniformly bounded
set.

Then, co(A) is relatively compact in By(X).

Proof. As in the Rosenthal’s theorem 1.22, we have that ¢o(A) is compact in
R¥.

Then, it is enough to show that co(A) C By (X).

Let z € c0(A). As A is compact in the locally convex Hausdorff space
R¥, there is a Radon measure 1 on A such that

£ = [ @) duto), vF € (RYY:
In particular
2(t) = / x(t) du(z), Vte X.
But, the function h: A x X —A> R defined by
h(z,t) =x(t), Vere AteX

satisfies the condition of Proposition 1.37. Hence,

A1) = / h(z,t) du(z) € Bu(X).

+ 1
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1.0.2 Summertime

In this section, we are going to show how the space C,(X) and B;(X) play
a central rule in the Banach space theory.

Let us start with a classical result due to H. P. Rosenthal, A. Pelczynski
and R. Haydon. Originally, the following result was proved using combinato-
rial tools. The following proof give a more topological character.

Theorem 1.39. Let B be a separable Banach space. Then the following are
equivalent

0.

1.

9.

10.

B contains a copy of {1 (i.e., ¢y embeds in B);
There is a bounded sequence in B with no weak-Cauchy subsequence;

There is a bounded sequence in B** with no weak®-convergent subse-
quence;

there is an element of B** which is not 1th Baire class function on
(Bx~, weak™);

There is an element of B** which is not weak®-limit of a sequence of
B;

The cardinality of B** is greater than the cardinality of B;

There is a bounded weak* strongly countably compact of B** which is not
weak® compact (strongly countably compact means that every separable
subset has compact closure);

there 1s a bounded weak* closed convexr subset of B* which is not the
norm closure convex hull of the set of its extreme points;

L41]0,1] embeds in B*;
(1(T") embeds in B* for some uncountable set T';

C([0,1]) is a continuous linear image of B.

Proof. Since B is a separable Banach space, we have that X = (Bpg«, weak*)
is a Polish space. Let us consider

F={flx feB™ |Ifll<1}.

Therefore, F' is a pointwise compact family of real-valued function on X.
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(2) = (0) Let us suppose that B** have a bounded sequence with no weak*
convergent subsequence. Then F fails (3) of Theorem 1.22. In particular, that
implies FF ¢ B1(X). Let (gn)n € B**, |lgn]] < 1 be such that: (g,), has no
weak* convergent subsequence. Letting f, = gn|x, n € w. Then (f,), C F
with no pointwise convergent subsequence. By Theorem 1.21, there exists
(fn, )k subsequence of (f,)n, L € X and f: X — R such that

fn, — [ pointwise

f satisfies the Discontinuity Criterion.

By the classical Goldstine ’s theorem
(A) f is in the pointwise closure of {g|; ¢ € ball(B)}.
Since the elements of ball(B) are continuous on L, by Proposition 1.19,
{, — B.

(1) = (0) If g,)» € B has no weak Cauchy subsequence, then (g, ), satisfies
(A) above. Therefore (g,,), has a subsequence equivalent to the usual ¢,-basis.

Therefore (0) — (1) — (2) are equivalents.

(6) = (0) Let us suppose (6) holds. Let F' defined as above. Then F
contains a strongly countable compact which is non compact Y. So Y fails
the condition (a) of Theorem 1.22

(0) = (6) If ¢; embeds in B, then ¢1* is weak* isomorphic to a subspace of
B**, and PN (the Cech-Stone compactification of N) is homeomorphic to a
weak® compact of £7*.

Let us consider a family (M, )a<w, of infinite subsets of N such that
M, N (N\ Mjp) is infinite (for o < 5 < wy)
Mp Cq M,
For any a < wy, let
Ko =3L""n(N\ M,).
Then (K4 )a<w, is a family of clopen in SN\ N with
Kz C K, a<f<uw.

Therefore,

U BN\ K,) N (BN\N)

a<wi

is a strongly countably compact which is non compact of SN. O
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Before continuing to prove the all equivalences above, we need to recall
the following

Definition 1.40. Let C' be a convex subset of a topological vector space. A
point zo € C' is said to be an extreme point if xg = Az + (1 — A)y, for some
x,y € C and \ €]0, 1], then necessarily o = z = y. In the sequel, we shall
denote by extC' the set of all extreme points of C'.

Proposition 1.41. If X is a metrizable compact convexr subset of a topolog-
ical vector space, then the extreme points of X form a Gg set

Proof. Suppose that the topology of X is given by the metric d. For each
n € w, let us define

1 1 1
Fn:{$€X$:§y+§Z, y7Z€X7 d(y,Z)Z—}
n

It is clear that
F,, is closed, n € w;

x € X is not an extreme point if and only if Ing € w : € F,,.

Then
X\extX = | F,,
new
which, of course, implies that extX is a G5 in X. O]

Corollary 1.42. If X is a complete metric space, C C X 1is a compact
convezx set, then
extC' is a Baire space.

Let us recall from Proposition 1.19 that:

If (), is a uniformly bounded sequence of real valued functions on a set
S, 0,r € R, with 4 > 0, and

A, ={¢€S: z,(§) >0+7r}
B,={£€S: z,(§) <r}.

Assuming that VF}, F5 C w finite and disjoints, we have

V(F, Fy)= () Auny [ Ba #0.

neF; neFy

Then (x,), is equivalent (in the sup-norm) to the usual ¢;-basis.
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Lemma 1.43. Let B be a Banach space, S be a non empty bounded subset of
B*, o € B*, r,§ € R with 6 > 0. Assume that for each weak*-open U C B*
with SNU # 0,

3¢,m € ot (SNU) -

e(§) >0+, (1.1)

w(n) <.

Then B contains a sequence equivalent to the usual {1-basis.

Proof. By assumption (1.1) and Golstine’s theorem, Jz; € B with ||z1]| =
||ol| such that
E(z1) >0+, n(zy) <.

Since &, € 0" (S), we have
Ay ={seS: s(xr1)>d+r}#0
By ={seS: s(x;) <r}#0.
Suppose, by induction, Jz1,...,z, € B has been defined such that
V(F1, Fy) # (), for every pair of disjoint sets F;, Fy C w.

Since V(Fy, Fy) is a weak® open which intersects S, by assumption, there
must exist (Fy, Fy),n(Fy, Fy) € @0 (V(Fy, Fy)):

C(&(F, Fy)) >0+

p(n&(Fr, Fy)) <
By Goldstine’s theorem 3x,,.1 € B, ||z,01|| = ||l :

€(F17F2)<wn+1) >0+

n(F, F2)(@ng1) <7
for every Fy, Fy € Fp(w).
Therefore, we have

An+1 N V(Fl,Fg) 7é @, Bn+1 N V(Fl,FQ) 7& @, VFl, F, e ]:D(w).
Therefore, the lemma follows by Proposition 1.19. n

Proposition 1.44. Let B be a Banach space such that {1 4> B.

Then, every weak* compact convex subset of B* is the norm closure convex
hull of its extreme points.
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Proof. Let C be a weak® compact convex subset of B* and suppose that
C' # norm closure convex hull of extC = @l l(extC).

By Hahn-Banach’s theorem, there exists ¢ € B** such that

1 =1inf{p(&): £ € C} > sup{p(§): £ € extC}.

By Bishop-Phelps’s theorem, we can, as well, assume that

F={£eC: p(¢)=1} #0.

—weak™

So, F'is a norm closed face of C'; let K = F and F = extK.
Notice that F' N E = (.

Indeed, if £ € F N E, then £ € extC and so p(§) < 1. But, F is a Baire
space (see [1] or Appendix 3), then there must exists ny € w such that

. 1
E,,=ENe*{¢cE: o) <1-—}
no

contains a non empty weak* open S of F.

We claim that the lemma holds for S, r =1 — nio, § = ﬁ

Let V is a weak* open such that VNS # (). Since V NS is a weak* open
of £, then 3x € B,a € R such that ift W = {{ € B*: £(x) > a} then

DAWNECVNS.

—weak™

Keeping in mind that K = F , there must exists §g € W N F.
If & € co¥** (W N E), we put £ = &. Otherwise, there are

& €@ (WNE), &ew ™ (E\W)
so that
o=+ (1= N)&, Ae[0,1].

Now, &(x) < a, while &y(z) > a. Therefore A > 0. Since F' is a face, {; € F.
Then,
p&) =1, & e (WNE).

On the other hand, {n € S: ¢(n) <1-— n—lo} is weak* dense in S, so VNS
contains some 7 such that

1
<1-—.
v(n) -
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Proposition 1.45. Let B be a Banach space containing a subspace isomor-
phic to £1. Then there is a weak* compact subset T' of B* such that

@ T £ ol T

Proof. Let
j : 61 — B

be a linear homeomorphism embedding and

w: bl —s C([0,1])

be a quotient map.

Denote by d6(t) (t € [0,1]) the Dirac measure (or point mass measure).
Then

@ 5(t) - t € [0,1]}
consists of all probability measures in M[0, 1], while
col l{s(t) . teo,1]}

consists just of all atomic probability measures.

Let us consider
S=u"({o(t): t€]0,1]}) C ly.
Then S is weak* compact convex so that
ek S £ zollls.
Finally, let T"C B* be a weak® compact such that
JN(T) = S.

Then
j*(%weak*T) — Eweak*s

and
j*(@IHIT) —alls.

That implies
ok T £ zollT.
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Note that if T is a uncountable abstract set, ¢y(I') contains no copy of
{1, but it is not weak* sequentially dense in (., (I"). Therefore, Theorem 1.39
above it is not true for a non separable case.

Definition 1.46. Let K be a compact Hausdorff space. A function ¢ : K —»
R is said to be uniwversally measurable if ¢ is p- measurable for every regular
Borel measure p on K. By Lusin’s theorem, that means there exists, for each
measure i and € > 0, a compact L C K such that

|u|(K\ L) <e, ¢|g is continuous.

Definition 1.47. If K is a compact convex space, ¢ : K — R satisfies the
barycentric calculus if ¢ is universally measurable and

/K pdp = o(rp)

for every probability measure p on K.

ru is called the resultant of u, defined to be the unique point of K such
that

/ fdu = f(rup), for every continuous affine function f on K.
K

Proposition 1.48. Let K be a compact convez set, p : K — R be a bounded
affine function. TFAE

(i) ¢ satisfies the barycentric calculus;

(ii) for every probability measure p on K, every e > 0 there exists a compact
convexr L C K with

u(L) > 1—¢ and ¢|L, is continuous

(iii) for every r,6 € R, § > 0, and every probability measure p on K there
is a closed conver L C K with u(L) > 0 which is contained either in

A={{cK: ¢ >r}

or in

Bs={{ € K: o&) <r+0d}.



Walking on Banach spaces 47

Proof. (i) = (ii) Since ¢ is universally measurable, given p and ¢ > 0 there
exists S C K compact:

u(S)>1—¢ and ¢|s is continuous.

Let L = col'llS.

Let P(S) be the set of all probability measures in M (S) equipped with
the weak® topology, and let

r:P(S)— L

be the barycentre map. r is a continuous surjection. By hypothesis

por(u)= / pdy.
S
Since ¢ is continuous on S, ¢ o r is continuous on P(.S)
= (p is continuous on L.
(17) = (i7i) Trivial.
(17i) = (i) Let C be a convex subset of K, u a positive measure on K.

Define
pe(C) = sup{u(L) : L compact convex, L C C'}.

Such a measure is usually called convez inner measure of p.

Claim: For each probability measure p, 6 > 0, then
1o(A) + p1e(By) > 1.

If not, we can choose increasing sequences of compact sets L,, C A, M, C B,
with:

pe(A) = supu UL te(Bs) = supu UM

Let us define
V= [ K\U, (LaUM,)-

If v is not zero, by hypothesis there exists L compact : v(L) > 0 and
either L C A or L C B;.

In case L C A, let L), = co(LU L,,) C A. Then, L/, is a compact convex such
that

p(Ly) = p(Ln) + v(L).
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In such case, (L)) > pu(A) for sufficiently large n € w. Namely, a contradic-
tion.

Since K\ A=

= 1(A) + pe(K \ A) = 1.

In particular, A is measurable and so ¢ is p-measurable.

Let us denote by A(K) the Banach space of all continuous affine real-
valued functions on K. Let us consider the natural embedding

K < ball A(K)*.

Therefore, we can identify ¢ as an element of A(K)**.
Given € > 0, let us consider N € w such that ||¢| < Ne.
For all =N <n < N let

Ch={€K: nep(&) < (n+ 1)}
If i is a probability measure, we have already shown that

N

Z pe(Cr) =1,

n=—N
so there are compact convex sets L,, C (), such that

Zu - (1.2)

el

whenever p(L,) # 0. Let

1
(L)

otherwise, if u(L,) = 0, we choose an arbitrary &, € L, C C,.

Hn = iz, and &, = 7,

Therefore

I — Zu n)nll = llrp — Zu )7 |
= sup Zu f(rpn)

lFlI<1
FEA(K)
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N
1
= sup | [ fdu= i) [ ga
i<t |k ; L, (L)
FEA(K)

(L, are disjoints) = sup / fdu — / fdu
NERKS N Ln
feA(K)

s |
A<t |JE\UN Ly
FEA(K)

S M(K \ UJENLn)
N

Therefore

<e. (1.3)
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On the other hand, by (1.3)

N
pdp — / pdp
L n:Z—N Ln

N
= ‘/ pdp = Y (L) - ne
K n=—N

<e

< 2e.

Thus
‘gp(r,u) — /Kgpdp' < 4e.

Theorem 1.49. (R. Haydon)
Let B be a Banach space and K = (ball B*,weak*). TFAE

(i) B contains no copy of l1;
(i1) every element of B** is universally measurable as functions on K;
(7i1) every element of B** satisfies the barycentric calculus on K.

Proof. (i) = (ii) Let u be a probability measure on K, ¢ € B*™ r,d € R
with 6 > 0. Let S = suppu . By Lemma 1.43 there is a weak™ open V with
SNV #( so that

either @"“* SNV C{¢ € K: ¢(&) >}

or @M SNV C{te K: &) <r+d}
We have that u(SNV) > 0. Thus (éi7) of the previous proposition holds with
L=to" " SnV.
(idi) = (i1) Trivial.
(77) = (i) Let us suppose that B contains a copy of /1, let
j:ty— B

be an embedding with ||j|| = 1. Let A be the product measure on {—1, 1}
with A\ € /. Finally, let © be a measure on K such that j*u = A.

Since o, = C(SN), then SN — ¢ _.

Choose y € SN\ N and consider ¢ = 7.

It is known that x is not A- measurable. Therefore, ¢ is not y-measurable.
O
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Appendix

2.0.3 Appendix 1

Theorem 2.1. Let (X,d) be a metric space and p be a Borel probability
measure on X. Then giwen a Borel set B C X and € > 0 there is a closed
set I C B and an open set G O B such that

WG\ F) <e. (2.1)

Proof. Suppose C' C X is a non empty closed set. Let f(x) = d(z,C). Then,
f is continuous and C' = {x € X : f(z) = 0}. Let

C,={reX: f(x)<%}

For each n € w, C,, is an open set with C,, O C and such that u(C,,) \, u(C).
Therefore, every closed satisfies (2.1).

Let B the family of Borel set which satisfy (2.1).
First notice that, if (B,), C B then |, B, € B.

Indeed, fixing ¢ > 0 we can pick F,, C B, a closed, G,, O B,, an open
such that (G, \ F,) < 7. Let us consider ng such that

p(JF N Fo) <

Therefore we have, (J;2, Fj, is a closed set, |J, o, G is open with

U cUs.cle.
k=1

new new

ol
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and
no
,u(U Gn \ UFk) <e.
new k=1
So, B contains the smallest o-algebra generated by open sets. O]

Theorem 2.2. (Ulam)
Let X be a Polish space and i be a Borel probability measure on X. Then
giwen a Borel set B, € > 0, there is a compact set K C B such that

uw(B\ K) <e.
Proof. 1t is enough to show that there is a compact set K such that

p(K)>1—e.

Since X is separable, for each n € w there is a family (Bg(n)), of balls of X
such that )
n

X =JBk(n), diam(By(n)) < —.

Without loose in generality, we can assume that the centers of (By(n))
coincide with those of (Bj(m)),. Then

k(1)
€
p AU B < 5,
i=1
E(2) .
O\ U Bi2) < o
i=1
and so on.
Conclusion:

((Bi(n) U...U By (n))

new

is totally bounded, and

K = ()(Bi(n)U...U By (n))

new

is compact. By construction

p(K)>1—e.
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2.0.4 Appendix 2

Let E be a locally convex space and let X C E be a compact convex subset.

Definition 2.3. A real valued function h defined on X is called affine if
h(Az + (1 — N)y) = Ah(z) + (1 = Nh(y), Vz,ye X, A€ 0,1].

Remark 2.4. Notice that not all all affine function is of the form z ——
f(z) +r, for some f € E* r € R,

Indeed, consider E = ({y,weak) and X == {(x,), € E : |z, < 2%}
Define

f: X —R byf(x):an

Then, f is affine with f(0) = 0. But the is no point y € ¢5 such that f(x) =
(z,y).

Consider A the uniformly closed subspace of C(X) consisting of all real
valued affine functions on X, and let

M =FE*|x +R.
The remark above says us that M is a proper subspace of A

Proposition 2.5. The subspace M is uniformly dense in the closed subspace
A of all affine continuous functions on X.

Proof. Suppose g € A, € > 0. Let us consider the following subset of £ x R
Ji=A{(z,r): r=g(x)}

Jo=A{(x,r): r=g(x)+e}.
Those sets are compact, convex , non empty and disjoints.

Using Hahn-Banach separation to 0 and J, — Jp, the exists a continuous
linear functional L on £ X R and A € R such that

sup L(Jy) < A < inf L(Js).

Let f be the function on E defined by the equation L(z, f(x)) = .

It is clear that f is affine and continuous. Moreover,

g(x) < f(z) <g(z)+e VrelX,
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and f € M. Notice that, the fact that f is affine on F, implies that f = h+r,
h € E*, r € R. Therefore,

f=flx=hlx+r = feM.

Let us say some more about f:
For each « € X there exists unique r, € R such that L(z,r,) = A.

Indeed, suppose there are r1,r7, € R so that
L(z,m) = A= L(x,ry).

Then, L(0,r; —r3) =0, or (r; —re)L(0,1) = 0, which implies r; = rs.
That shows f is well defined. Moreover f is affine. Indeed,

L(te + (1 =ty tf (x) + (1 = 1) f(y)) = tL(z, f(2)) + (1 =)Ly, f(y)) = A

= flte+ (1 —1t)y) = f(z)) + (1 =)Ly, f(y).
Finally, let us shows that f is continuous.

If x, — 2, and |f(x,) — f(x)| > 6 > 0. Since

L(xn, f(2n)) = A = L(z, f(x))

we get
T, — T
0= Lzn —a, f(zn) — f(2)) = (f(20) — f(%‘))L(m7 1).

Since (m>” is a bounded sequence in R, we have

T R

flan) = f(2) '
Therefore, since L is continuous

Ty — T
e @

Thus f(z,) — f(x). Namely a contradiction. O
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2.0.5 Appendix 3

Let E be a topological space and «, 3 two players, with 3 the first to move.
The game is:

each player chooses a non empty set V' in E lying inn the opponent’s
previously chosen set.

The space E is called a-favorable if o has a winning tactic no matter what
8 chooses, i.e. a can choose sets V;, such that () V;, # 0. A mathematical
definition can be

Definition 2.6. Let (F,6) be a topological space. We say that E is «a-
favorable iff there is a map f : § — 6 such that

f(U)CUforalUe€#,
for any sequence Vi, V3, ..., Vo,iq, ... so that
ViD f(Vi) 2 Va2 f(Vy) 2.

we have

(Vi # 0.

new
Example 2.7. (i) Every complete metric space is a-favorable.

Indeed, define a function f such that

diamf(U) < = inf{1, diamU}

N | =

and

fU) cfU) CU.

Then given Vi, Va,. .., Vansns-.. < Vi 2 F(V)) 2 Vs 2 f(Vi) 2 ...
consider x,, € V,,, n € w. Then (z,), is Cauchy and the limit

T = liTanxn € ﬂVn.
n

(ii) Every locally compact Hausdorff space is a-favorable.

In such case, choose f(U) with f(U) compact and f(U) C U. Then by
Cantor’s theorem, if V,, are as in the definition, we get

() Vi # 0.

new



56 Appendix 3

Theorem 2.8. Fvery a-favorable topological space is a Baire space.

Proof. Suppose E is not Baire, then there are closed nowhere dense sets F,
such that

int(| J F.) 2V

necw
for some non empty open set V.
Let Vi =V and Vo, = Vo, 1 N (E\ F).

Then there is no f giving a winning strategy since
V(E\|JF)=0.

]

Lemma 2.9. Let E be a Hausdorff TVS, X C E conver and A C X a convex
linearly compact (i.e., any line intersecting A does so in a closed segment).

Suppose X \ A = B is convex. Then if ext(A) # ) we have
ext(A) Next(X) # 0.

Proof. Let a € ext(A) and suppose ext(A) N ext(X) = (. Therefore a &

ext(X). Then

1 1
a:§x+§y, for some x # y in X.

Since A, B are convex, we can suppose that x € A,y € B. Let £ = line{x, y}.
By hypothesis £N A = [a,b], b € A (because a € ext(A)).

Claim: b € ext(X).

Suppose not, then b = %bl—l-%bz, by # by with by € A. Let ¢/ = line{b, by }.
By construction, by & ¢ (since £ N A = [a, b]).

For ¢y, ¢y € co{by, by, y} lying in separate open half space y — b, let

glcr,c2) = Aep + (1 — Neo

so that g(cy,co) € span(y, b).
Subclaim: We can choose by, € A.

Suppose not, the we can find z, €]b,by] N B such that z, — b. Then
VZ € [bluy[
9(z,z,) = b.

If z € [by, y[ then g(z, z,) € B (since B is convex).
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Then [by,y[C A. Since A is linearly compact, we get [by,y[C A. Namely
a contradiction, because y € B.

Then we can assume by € A. Let ¢; be the end point of the segment
[bi,y] N A, i =1,2. Then ¢; # y, i = 1,2. Therefore we can choose

such that '
d; — ¢, t=1,2.

Let e, = g(d.,d?) € B.

Then e, — g(c1,¢) € A. It follows that g(ci,c2) = a. Or a € ext(A). A
contradiction. O

Theorem 2.10. (Chogquet)
Let E be a Hausdorff LCS and X C E be a convex compact subset.

Then ext(X) is a-favorable. In particular, ext(X) is a Baire space.

Proof. Given an open set A C ext(X), and a € A we can choose a closed
slide V' of X such that
VNext(X) C A.

Slide means a set of type: Jz* € E*, V=X N{x € E: 2*(x) < r} for some
r € R.
Define
©(A,a) =V Next(X)
Of course, we can assume that p(A;,a1) C p(Asy, az) whenever A; C A,.

If V1, Vs, ... is a decreasing sequence of closed slides of X corresponding
to Aq, As, ..., since X is compact we get

(Vo #

But (), Vi, is convex, closed set and X \ [, V}, is convex in X. Then, by the
previous lemma, we have
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