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Il grande pensatore é grande perché é capace di ascoltare l’opera degli
altri “grandi” traendone ció che vi é di piú grande e trasformandolo in modo
originale.

Martin Heidegger
Nietzsche
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Chapter 1

Preliminaries test so good!

Let X be a topological space. A ⊆ X is called nowhere dense if intA = ∅.
A ⊆ X is called of 1th Baire category is there exist a sequence (An)n of
nowhere dense subsets of X such that

A =
⋃
n∈ω

An.

A ⊆ X is called of 2th Baire category is A is not of 1th Baire category.

Definition 1.1. A topological space X is called a Baire space is every non-
empty open of X is of 2th Baire category.

Remark 1.2. It is easy to see that

1. A is nowhere dense in X ⇐⇒ A is nowhere dense.

2. A is of 1th Baire category in X ⇐⇒ A is of 1th Baire category.

3. A closed C subset of a topological space X is 1th Baire category if and
only if it is countable union of closed nowhere dense.

Proof. For 2. it is enough to note that A = A ∪ FrA, (where FrA is the
boundary of A) and intFrA = ∅.

For 3. it is enough to note that if (Kn)n is a sequence of nowhere dense
such that C =

⋃
nKn then

C = (
⋃
n

Kn) ∪ FrC.
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4 Some preliminaries

Proposition 1.3. Let (X, τ) be a topological space, A an open subset of X.
Then A is 2th Baire category in X if and only if A is 2th Baire category in
(A, τ).

Proof. Easy.

Theorem 1.4. (Baire) Let (X, τ) be a topological space. Then the following
are equivalent

(i) (X, τ) ia a Baire space;

(ii) for every family (An)n of open dense subsets of X, then
⋂
nAn is dense

in X.

Proof. (i) → (ii) Suppose that there exists (An)n of open dense subsets of
X such that

⋂
nAn is not dense in X. Therefore, there exists an open set A

such that A ∩
⋂
nAn = ∅. Since, for each n ∈ ω, An is dense, we have that

int(A \ An) = ∅

and A \ An is closed. Then A =
⋃
n(A \ An) should be an open of 1th Baire

category.

(ii) → (i) Suppose there exists an open of 1th Baire category A. Hence
there exists a sequence of nowhere dense (Kn)n such that

A =
⋃
n

Kn.

Then An = X \Kn is a sequence of open dense of X with
⋂
nAn not dense

in X (because otherwise we should have A = ∅).

Theorem 1.5. (Baire) Every complete metric space (X, d) is a Baire space.

Proof. Easy

Definition 1.6. Let (X, d) be a complete metric space. A function

f : X −→ R

is called of 1th Baire category if there exists a sequence of continuous functions
(fn)n ⊆ C(X) such that

f(x) = lim
n
fn(x) for every x ∈ X.

We shall denote by B1(X) the space of all Baire functions on X, equipped
with the pointwise topology.
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Let B an open ball of (X, d) and f : X −→ R be a function. Let

ωf (B) = sup
x∈B

f(x)− inf
x∈B

f(x)

ωf (B) is called the oscillation of f in B.

For any x ∈ X, we define

ωf (x) = lim
δ→0

ωf (B(x, δ)).

ωf (x) is called the oscillation of f in x.

It is clear that f is continuous at x0 if and only if ωf (x0) = 0. Moreover

Df =
⋃
n

{x ∈ X : ωf (x) ≥ 1

n
}

coincides with the set of discontinuity points of f and every {x ∈ X : ωf (x) ≥
1
n
} is closed. Then the discontinuity points of a function f : X −→ R is a Fσ

set.

Theorem 1.7. (Baire) Let (X, d) be a complete metric space, f : X −→ R
be a 1th Baire category function. Then f is continuous except a set of points
of 1th Baire category.

Proof. It is enough to show that for every ε > 0

F = {x ∈ X : ωf (x) ≥ 5ε}

is nowhere dense.

Let (fn)n be a sequence of continuous functions such that (fn)n converges
pointwise to f . Let

En =
⋂
i,j≥n

{x ∈ X : |fi(x)− fj(x)| ≤ ε}.

Then

(1) En is closed for all n ∈ ω;

(2) En ⊆ En+1 for all n ∈ ω;

(3)
⋃
nEn = X.
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Since X is a Baire space, for each closed C ⊆ X, there exist an open subset
AC of X, n0 ∈ ω such that

AC ⊆ C ∩ En0 .

That means

|fi(x)− fj(x)| ≤ ε ∀x ∈ AC , i, j ≥ n0.

For j = n and i→∞ we get

(1) |f(x)− fn(x)| ≤ ε ∀x ∈ AC .

Now, for each x0 ∈ AC , there exists I(x0) ⊆ AC neighborhood of x0 such
that

(2) |fn(x)− fn(x0)| ≤ ε ∀x ∈ I(x0).

Putting (1) and (2) together, we have

|f(x)− fn(x0)| ≤ ε ∀x ∈ I(x0).

Therefore ωf (x0) ≤ 4ε. So no points of AC belongs in F . But C was an
arbitrary closed such that there exist an open AC and

AC ⊆ C \ F.

That implies F is nowhere dense

Using the fact that a Fσ set is of 1th Baire category if and only if its
complement is dense, we get

Corollary 1.8. Let (X, d) be a complete metric space and f : X −→ R.
Then

f ∈ B1(X) if and only if f is continuous at a dense set of points.

Corollary 1.9. (R. Baire, 1899) Let (X, d) be a complete metric space. A
function f on X is 1th Baire function if and only if its restriction to every
closed subset M of X has a point of continuity.

Proof. If DM = Df ∩M is the set of discontinuity points of f in M , we have
that DM is a Fσ set of 1th Baire category of M .
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1.0.1 The spaces Cp(X) and B1(X)

Definition 1.10. For a compact topological space X, we denote by C(X)
the space of all continuous real-valued functions on X. On such space, we
consider

(i) the norm topology: the topology defined by the norm

‖f‖ = sup
x∈X
|f(x)|;

(ii) the pointwise topology: obtained by considering C(X) as a subspace of
RX , the space of all real-valued functions equipped with the product
topology. This space is denoted by Cp(X) (X in such case could be a
Polish space). A neighborhood of a function f is determined by finite
sequence x1, . . . , xn of points in X and ε > 0 by

Uf (x1, . . . , xn, ε) = {g ∈ Cp(X) : |g(xi)− f(xi)| < ε, ∀i = 1, . . . , n}

Definition 1.11. A space X is countably compact iff every sequence in X as
a cluster point in X.

For separable metric space this notion is equivalent to compactness, but
in general is weaker.

Theorem 1.12. (Grothendieck) Let X be a compact space and Y ⊆ Cp(X)
a closed subspace. Then Y is compact if and only if it is countably compact.

Proof. Assume Y countably compact. Then, for every x ∈ X there is a
positive real number Mx such that |f(x)| ≤Mx for every f ∈ Y . Since Y is a
closed subset of

∏
x∈X [−Mx,Mx], we have that Y taken inside RX is compact

in RX .

Claim Y lies in Cp(X).

Suppose there exists a discontinuous function f ∈ Y . Fix ε > 0 and
y ∈ X such that the set Z = X \ f−1(f(y) − ε, f(y) + ε) accumulates to y.
By induction, we built sequences {Un} of open sets containing y, (xn)n ⊆ Z
and (fn)n ⊆ Y such that

(0) Un+1 ⊆ Un, for all n;

(1) |fn(x)− fn(y)| < ε
2n

for all x ∈ Un;

(2) xn ∈ Un ∩ Z, for all n;

(3) |fn+1(xi)− f(y)| > ε
2
, for i = 1, . . . , n;
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(4) |fn(y)− f(y)| < ε
2n

.

Assume that Ui, fi and xi are chosen for all i ≤ n. Then Uf (x1, . . . , xn, y,
ε
2
)∩

Y is not empty, so pick fn+1 in this set. Then

|fn+1(xi)− f(y)| ≥ |f(xi)− f(y)| − |fn+1(xi)− f(xi)| >
ε

2
.

Therefore fn+1 satisfy (3). Since fn+1 is continuous at y we can pick an open
neighborhood Un+1 of y such that Un+1 ⊆ Un and (1) is satisfied. Finally, for
the definition of Z, we can pick xn+1 ∈ Un+1 ∩ Z to satisfies (1).

Let x∞ an accumulation point of (xn)n; in particular x∞ ∈
⋂
n Un. Let

S = (xn)n ∪ {x∞} and define

Φ : Cp(X) −→ Cp(S)

by
Φ(g) = g|S

Then Φ is continuous. Therefore F = Φ(Y ) is a compact in Cp(S) ⊆ RS
a separable metric space. Since F is countably compact, we have that F is
compact. Let g be an accumulation point of {fn|S}n. By the construction, we
have that g(x∞) is not in the closure of {g(xn)}n. Then g is not continuous
at x∞. Namely a contradiction.

Let us recall that, if X is a Banach space, for each x∗ ∈ X∗ let Dx∗ = K,
and let D =

∏
x∗∈X∗ Dx∗ . Let T : X −→ D the map defined by

T (x) = (x∗(x))x∗∈X∗ .

Then T is one-to-one embedding of X into D. The weak topology on X is
defined as the topology induced by D via the map T . Similarly, we can
define on X∗ a weaker topology, called the weak∗ topology, which is induced
by D̃ =

∏
x∈X Dx, where Dx = K, for each x ∈ X. It is classical, and easy to

prove, that the closed unit ball BX∗ of X∗ is weak∗ compact (in the literature
such a result is called the Banach-Alaoglu-Boubaki).

Remark 1.13. Grothendieck’s theorem in particular implies:

A sequence (fn)n in (C(X), ‖ · ‖) is weakly convergent to a function f if
and only if fn converges pointwise to f .

Definition 1.14. A regular Hausdorff space X is called angelic space if

(i) every relatively countably compact is relatively compact;
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(ii) for every relatively compact A of X, then x ∈ A if and only if there
exists (xn)n ⊆ A converging to x.

We notice that even the space c0 = C(αN), where αω is the Alexandroff’s
compactification of the natural numbers, is not an angelic space.

The next result, via Grothendieck’s theorem, tell us that the space Cp(X)
is angelic.

Theorem 1.15. (Eberlain) Let X be a compact space and Y be a compact
subset of Cp(X). Then for every A ⊆ Y , if f is in the closure A of A then
there is (fn)n ⊆ A converging to f .

The proof follows by the next two lemmas.

Lemma 1.16. Under the assumption of the theorem above, there is a count-
able A0 ⊆ A such that f ∈ A0

Proof. Let us assume that f = θCp(X). Fix n ∈ ω and x = (x1, . . . , xn) ∈ Xn.
Pick fx ∈ Uθ(x1, . . . , xn,

1
n
) ∩ A and let

Wx =
n∏
i=1

f−1
x (− 1

n
,

1

n
).

Wx is open in Xn. Since Xn is compact, there exists a finite set Fn ⊆ Xn

such that ⋃
x∈Fn

Wx = Xn.

Let

A0 = {fx : x ∈ Fn, n ∈ ω}.

A0 is clearly countable. We need to show that θCp(X) ∈ A0.

Given ε > 0 and x1, . . . , xn. Increasing nif needed, we can assume that
1
n
≤ ε. We need to find g ∈ A0 such that, for i = 1, . . . , n, |g(xi)| < 1

n
. Choose

y ∈ Fn such that x = (x1, . . . , xn) ∈ Wy. then g = fy works. Indeed, follows
form xi ∈ f−1

y (− 1
n
, 1
n
), for 1 ≤ i ≤ n, that |fy(xi)| < 1

n
.

Lemma 1.17. For every countable A0 ⊆ Y , the closure A0 is second count-
able.

Proof. Let Φ : X −→ RA0 be defined by

Φ(x) = (f(x))x∈A0 .
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Then Φ is a continuous map. Therefore, Z = Φ(X) ⊆ RA0 is a compact
second countable space. Let us define

Ψ : Cp(Z) −→ Cp(X)

by
Ψ(f) = f ◦ Φ.

Step 1 Ψ is a homomorphism embedding.

Clearly Ψ is one-to-one.. To see that Ψ is continuous note that

Ψ−1(UΦ(f)(x1, . . . , xn, ε)) = Uf (Φ(x1), . . . ,Φ(xn), ε).

On the other hand, for every basic open set Uf (z1, . . . , zn, ε) of Cp(Z),

Ψ(Uf (z1, . . . , zn, ε)) = UΦ(f)(x1, . . . , xn, ε) ∩Ψ(Cp(Z))

for every choice of xi ∈ Φ−1(zi), i = 1, . . . , n. Thus, the inverse of Ψ is also
continuous.

Step 2 The range of Ψ is closed in Cp(X).

Take g in the closure of Ψ(Cp(Z)) inside Cp(X). For every z ∈ Z, the
function g is constant on Φ−1(z). Otherwise, if for some x1, x2 ∈ Φ−1(z)
the number ε = |g(x1) − g(x2)| is positive, then Ug(x1, x2,

ε
4
) would be a

neighborhood of g which doesn’t intersect the range of Ψ.

Indeed, if f̃ ∈ Ug(x1, x2,
ε
4
) ∩RangeΨ, then f̃ = Ψ(f1). But

ε = |g(x1)− g(x2)| ≤ |g(x1)−Ψ(f1(x1))|+ |Ψ(f1(x1))−Ψ(f1(x2))|
+ |g(x2)−Ψ(f1(x2))|
= |g(x1)− f1(z)|+ 0 + |g(x2)− f1(z)|.

Therefore, either |g(x1)− f1(z)| ≥ ε
2

or |g(x1)− f1(z)| ≥ ε
2
.

But |g(xi)− f1(z)| = |g(xi)−Ψ(f̃(xi))|. That implies f̃ 6∈ Ug(x1, x2,
ε
4
).

It follows that there is a function f : Z −→ R such that g = f ◦ Φ. We
need to show that f is continuous.

Let τ the maximal topology on Z for which Φ is continuous. Note that f
is τ continuous because

Φ−1(f−1(I)) = g−1(I)

is open in X for every rational interval I. Since (Z, τ) is continuous image
under Φ, it is compact. But the original topology σ of Z (inherited from RA0)



The spaces Cp(X) and B1(X) 11

is also compact Hausdorff. Since σ ⊆ τ we have that σ = τ .This shows that
f is continuous. This proves the claim.

It follows that our set A0 is a subset of the compact set

Y ∩Ψ(Cp(Z))

so its closure A0 is a compact subset of the range of Ψ. Since Ψ is a ho-
momorphism it is enough to show that compact subsets of Cp(Z) are second
countable. Recall that a compact space is second countable if and only if there
is a countable family of continuous functions which separates its points. Let
D ⊆ Z a countable dense of Z. For each d ∈ D let us consider

pd : Cp(Z) −→ R

given by
pd(f) = f(d)

It is clear that (pd)p is a sequence of continuous functions separating the
points of Z.

Definition 1.18. Let Y be a topological space and f a real-valued function
defined on Y . We say that f satisfies the Discontinuity Criterion provided
there is a non-empty subset L ⊆ Y , r, δ ∈ R with δ > 0 so that

for every non-empty open U ⊆ L (open in L)

∃y, z ∈ U :

{
f(y) > r + δ
f(z) < r

Proposition 1.19. Let Y and f as above and suppose f satisfies the Dis-
continuity Criterion.

Then there is a closed non-empty subset K of Y such that f |K has no
point of continuity relative to the topological space K.

Suppose moreover that there is a uniformly bounded family F of contin-
uous real-valued functions on Y so that f is in the pointwise closure of F .
Then F contains a sequence equivalent in the sup-norm to the usual `1-basis.

Proof. Let L, r, δ be chosen as in the above definition. Then K = L is the
desired closed subset.

Now, let us suppose that f |L is in the pointwise closure of F |L. That
means

∀ε > 0 ∃l1, . . . , ln ∈ L, g ∈ F : |g(li)− f(li)| < ε, i = 1, . . . n.

Step 1 There exists (gn)n ⊆ F such that, if An = {x ∈ L : gn(x) > r+δ}
and Bn = {x ∈ L : gn(x) < r}, then
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(1) An ∩Bn = ∅ for each n ∈ ω;

(2) for every finite subsets F1, F2 ⊆ ω with F1 ∩ F2 = ∅ we have(⋂
n∈F1

An
)
∩
(⋂

n∈F2
Bn

)
6= ∅.

For sake of notation, let us denote by Ai = Ai and −Ai = Bi.

Indeed, by hypothesis, choose y1, y2 ∈ L such that f(y1) > r+δ, f(y2) < r.
Since f is in the pointwise closure of F , there must exists g1 ∈ F such that

g1(y1) > r + δ, g1(y2) < r.

Trivially, we have (1) and (2) above.

Suppose g1, . . . , gn ∈ F have been chosen so that

n−1⋂
i=1

εiAi 6= ∅

for each choice of signs ε = (ε1, . . . , εn−1), with εi = ±1.

Since
⋂n−1
i=1 εiAi is a non-empty open set in L, by hypothesis we can pick

yε1, y
ε
2 ∈

⋂n−1
i=1 εiAi such that

f(yε1) > r + δ, f(yε2) < r.

Again, we can choose gn ∈ F such that

gn(yε1) > r + δ, gn(yε2) < r,

for all 2n−1 choices of ε.

It follows that (gn)n satisfies the Step 1.

Step 2 (gn)n is equivalent (in the sup norm) to the usual `1 basis.

By multiplying all gn’s by −1 we can assume r + δ > 0. Let (ci)i be a
sequence of scalars only finite many ci’s non zero so that

∑
i |ci| = 1.

It is enough to show that there is an s ∈ L such that

|
∑
i

cigi(s)| ≥
δ

2
.

Indeed, by homogeneity we get

δ

2

∑
i

|ci| ≤ ‖
∑
i

cigi‖ ≤
∑
i

|ci|,
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which means that (gn)n is equivalent to the `1 basis.

Let G = {i ∈ ω : ci > 0} and B = {i ∈ ω : ci < 0}. By (2) of Step 1, we
can choose

(∗) x ∈

(⋂
i∈G

Ai

)
∩

(⋂
i∈B

Bi

)
, y ∈

(⋂
i∈B

Ai

)
∩

(⋂
i∈G

Bi

)
.

If we suppose first r ≥ 0, setting B′ = {i ∈ B : gi(x) > 0} then∑
i∈B

cigi(x) ≥
∑
i∈B′

cigi(x) > −r
∑
i∈B′
|ci| ≥

∑
i∈B

|ci|(−r).

Similarly

−
∑
i∈B

cigi(y) ≥
∑
i∈B

|ci|(−r)

For (∗) then we have

(a)
∑
i

cigi(x) ≥
∑
i∈G

|ci|(δ + r) +
∑
i∈B

|ci|(−r)

and

(b) −
∑
i

cigi(y) ≥
∑
i∈B

|ci|(δ + r) +
∑
i∈G

|ci|(−r).

Actually, the inequality (a) and (b) hold for r < 0 too.

Therefore∑
i

|ci|gi(x)−
∑
i

|ci|gi(y) ≥

≥
∑
i∈G

|ci|(δ + r) +
∑
i∈B

|ci|(−r) +
∑
i∈B

|ci|(δ + r) +
∑
i∈B

|ci|(−r)

=
∑
i∈G

|ci|δ +
∑
i∈B

δ

= δ.

That implies

either
∑
i

|ci|gi(x) ≥ δ

2
or −

∑
i

|ci|gi(y) ≥ δ

2
.

In any case, s = x or s = y satisfies the conclusion.
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Lemma 1.20. Let X be a Polish space and let (fn)n be a pointwise bounded
sequence of real valued functions on X such that (fn)n has no pointwise con-
vergent subsequence.

Then, there are N ′ ⊆ ω and real numbers r, δ with δ > 0 so that for every
M ⊆ N ′ there is x ∈ X such that

(1) fm(x) > r + δ for infinitely many m ∈M

and
fm(x) < r for infinitely many m ∈M.

Proof. Suppose not. Let us enumerate Q×Q by {(rn, δn)}n.

Let M0 = ω. We now choose infinite sets M0 ⊇ M1 ⊇ . . . ⊇ Mn ⊇ . . . as
follows: suppose Mn−1 has been already chosen, since (1) above is false, then
there exists Mn ⊆Mn−1 so that every x ∈ X fails to satisfies (1) for Mn and
(rn, δn).

By a diagonalization argument, we can choose M ⊆a Mn ∀n ∈ ω such
that for every x ∈ X does not exist (r, δ) ∈ Q×Q satisfying (1).

But (fn)n∈M is pointwise bounded and non converging sequence, then
there exists x ∈ X such that

lim inf
m∈M

fm(x) � lim sup
m∈M

fm(x).

Now, simply choose rational numbers r, δ with δ > 0 such that

lim inf
m∈M

fm(x) < r < r + δ < lim sup
m∈M

fm(x).

Therefore x satisfies (1) with M r and δ. Namely a contradiction.

Theorem 1.21. Let X be a Polish space and let (fn)n be a pointwise bounded
sequence of real valued functions on X, such that (fn)n has no pointwise
convergent subsequence. Then there exists a non empty subset L ⊆ X and
a subsequence (fnk)k which is pointwise convergent on L so that the limit
function f satisfies the Discontinuity Criterion.

Consequently, (fnk)k has no 1th Baire class cluster point in the topology
of pointwise convergence.

Proof. Let N ′, r, δ as the lemma above.

For every M ⊆ N ′ let K(M) the closure of the set of all x ∈ X satisfying
(1) of the previous lemma. We have

(a) K(M) is a non empty closed set of X, for each M ⊆ N ′;
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(b) K(M1) ⊆ K(M2) whenever M1 ⊆a M2 ⊆ N ′.

Recall that in a Polish space there is no family {Kα, α ∈ ω1} of closed
subset, indexed by the first uncountable ordinal ω1, with Kα ( Kβ for all
β < α < ω1.

Therefore, there exists M ⊆ N ′ so that

K(M ′) = K(M) for all M ′ ⊆a M.

Indeed, otherwise by a diagonalization argument we could construct (K(Mα))α<ω1

so that K(Mα) ( K(Mβ) for all β < α < ω1.

Claim ∀M ′ ⊆a M , for all open U ⊆ K(M), there are M ′′ ⊆a M ′, y, z ∈ U
such that

(3) lim
n∈M ′′

fn(y) ≥ r + δ

and
lim
n∈M ′′

fn(z) ≤ r.

Indeed, fix M ′ ⊆ M . Then K(M ′) = K(M). By definition, there exists
y ∈ U : fn(y) > r + δ for infinitely many n ∈ M ′. Now choose a subset
M1 ⊆a M ′ such that (fn(y))n∈M1 converges.

By definition, there exists z ∈ U : fn(z) < r for infinitely many n ∈ M1.
Finally, choose M2 ⊆a M1 so that (fn(z))n∈M2 converges.

Now, let (Un)n be a base of open sets of K(M). Therefore, we can have
(Mn)n a sequence of infinite sets of ω with

Mn+1 ⊆a Mn for all n ∈ ω,

zn, yn ∈ Un for all n ∈ ω,

such that the (3) of the claim holds.

As always, by diagonalization argument, let us consider Q ⊆a Mn ∀n ∈ ω
and let L = {yn, zn : n ∈ ω}. Notice that L is dense in K(M).

Let us define
f(x) = lim

n∈Q
fn(x) ∀x ∈ L.

Consequently, (fnk)k = (fn)n∈Q, L and f satisfy the conclusion of the theo-
rem.

Theorem 1.22. (H. Rosenthal)
Let X be a Polish space and let F be a subset of B1(X). The following are
equivalents
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(1) F is relatively compact;

(2) F is relatively countably compact;

(3) F is relatively sequentially compact.

Moreover, suppose F satisfies the equivalence, then

(a) every function in the closure of F is in the closure of a countable subset
of F ;

(b) if F is uniformly bounded and (fα)α is a convergent net of F with limit
f , then∫
fα dµ −→

∫
f dµ for all signed Borel measure µ on X.

Proof. (2) ⇒ (3) By hypothesis, F has to be pointwise bounded. Then (3)
holds by the previous theorem.

(2) ⇒ (1) Suppose (1) fails. For (2), F is pointwise bounded; hence the
pointwise closure of F in XR is compact by Tychonoff’s theorem. Therefore,
there must exists a non 1th Baire class function f in the pointwise closure of
F . By Baire’s theorem 1.9, there exists a closed non empty subset K of X
such that f |K has no point of continuity relative to K.

Claim: f satisfies the Discontinuity Criterion.

Indeed, for each n ∈ ω let

An = {x ∈ K : for every neighborhood U of x ∃y, z ∈ U : f(y)− f(z) >
1

n
}

Since f |K has no point of continuity, we have that

K =
⋃
n∈ω

An.

By the Baire category’s theorem 1.4, there is a n0 such that An0 has non
empty interior U0. Let K0 = U0 and δ = 1

n0
. We have that, for all U ⊆ K0

open, U ∩ U0 is open in K0. Then ∃y, z ∈ U : f(y)− f(z) > δ.

Let (rn)n = Q and for n ∈ ω let us define

Bn = {x ∈ K0 : for every neighborhood U of x ∃y, z ∈ U ∩K0 :

f(z) < rn

f(y) > rn + δ}
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Then
K0 =

⋃
n∈ω

Bn.

Again, by the Baire category’s theorem 1.4, ∃n1 ∈ ω such that Bn1 has
non empty interior V . Let us consider L = V and r = rn1 .Then, we have
that f satisfies the Discontinuity Criterion for L, r, δ.

Let (Un)n be a base of open sets in L. For each n ∈ ω choose yn, zn ∈ Un
such that

f(yn) > r + δ f(zn) < r.

Let Q = {yn, zn : n ∈ ω}. Since f is in the pointwise closure of F and Q is
a countable set, there must exists a sequence (fn)n ⊆ F such that

fn(q)
n→∞−→ f(q) ∀q ∈ Q

But Q is dense in L, it follows that f |Q satisfies the Discontinuity Criterion.
Moreover, it is clear that if g is a cluster point of (fn)n then g|Q = f |Q.
Therefore, g has no point of continuity in Q. Thus (fn)n has no 1th Baire
class cluster point. That means (2) fails.

Since (1) ⇒ (2) and (3) ⇒ (2) are trivial, we have that the equivalence
of (1)− (2)− (3).

To show (2)⇒ (a) we need the following

Lemma 1.23. Let S be a pointwise relatively compact of B1(X), 0 ∈ S,
s(x) ≥ 0 for all s ∈ S, x ∈ X.

Then, ∀δ > 0 ∃H ⊆ S a countable set such that

inf
h∈H

h(x) < δ ∀x ∈ X.

Proof. Suppose not. Then ∀H ⊆ S ∃δ > 0 such that

K(H) = {x ∈ X : h(x) ≥ δ ∀h ∈ H}

is non empty. Then we have

K(H1) ⊆ K(H2) whenever H2 ⊆ H1.

By transfinite induction, we construct (Dα)α<ω1 , ((sαn)n∈ω)α<ω1 ⊆ S and
(Hα)α<ω1 so that

(i) Hα ⊆ Hβ for α < β < ω1;

(ii) Dα is dense in K(Hα) and Dα countable;
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(iii) limn s
α
n(x) = 0 for all x ∈ Dα;

(iv) Hα+1 = Hα ∪ {sαn, n ∈ ω}.

Let H0 be arbitrary. Chosen Hα and Dα, we can consider ((sαn)n∈ω)α<ω1 ⊆ S
as in (iii) by a diagonalization argument and using the fact that 0 ∈ S.

Let us consider Hα+1 as in (iv). If β is a limit ordinal, put Hβ =
⋃
α<βHα.

the countability of β and the countability of every Hα insures that Hβ is
countable.

Then there must exists α < ω1 such that K(Hα) = K(Hα+1).

Let f be any cluster point of ((sαn)n∈ω)α<ω1 . Then f must vanish on Dα.

∀x ∈ K(Hα+1), sαn(x) ≥ δ for all n ∈ ω ⇒ f(x) ≥ δ.

Since K(Hα+1) and Dα are dense in K(Hα) we have

f satisfies the Discontinuity Criterion

⇒ f 6∈ B1(X). A contradiction.

Proof. of (2)⇒ (a)

∀m ∈ ω let

φm : B1(X) −→ B1(Xm)

define by

φm(f)(x1, . . . xm) = |f(x1)|+ . . .+ |f(xm)|.

Let g ∈ F . WLOG we can suppose g = 0 (otherwise consider {f − g : f ∈
F}). Therefore, φm is a continuous map and φm(0) = 0. Then φm(F ) is
relatively compact of B1(Xm) and 0 ∈ φm(F ). By Lemma 1.23, there must
exists Hm a countable set of F such that

1

m
> inf{(φmh)(y), h ∈ Hm} ∀y ∈ Xm

⇒ 0 ∈
⋃
m∈ω

Hm.

To show (1)⇒ (b) we shall need of the following
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Lemma 1.24. Let X be a compact Hausdorff space and let us denote by K
the unit ball of M(X) (the space of all bounded signed Borel regular measures
on X) endowed with the weak∗ topology relative to C(X).

Let us define
T : bd− B1(X) −→ KR

by

Tf(µ) =

∫
X

f dµ,

where we are denoting by bd − B1(X) the space of all 1th Baire class which
are bounded.

Then the range of T is a closed subset of bd− B1(K).

Proof. It enough to show that T (bd − B1(X)) consists of all functions in
bd− B1(K) which are antisymmetric and affine.

Obvious all functions in T (bd−B1(X)) are antisymmetric and affine. Let
us suppose f ∈ B1(K) bounded, antisymmetric and affine. Then there exists

an element f̃ ∈M(X)∗ = C(X)∗∗ such that

f̃ |K = f.

Claim: f̃ is of 1th Baire class ⇐⇒ f̃ |K = f is of 1th Baire class.

Suppose we have already proved the Claim, then f̃ |K = f is of 1th Baire

class. Therefore, f̃ ∈M(X)∗ is of 1th Baire class.

Then there exists (fn)n ⊆ C(K) such that

lim
n
〈µ, fn〉 = 〈µ, f̃〉 ∀µ ∈M(X).

But

〈µ, fn〉 =

∫
fn dµ ∀µ ∈ K

By the Lebesgue convergent’s theorem

∃h ∈ B1(X) : 〈f, µ〉 =

∫
h dµ,

or
f = T (h).

Let us prove the Claim above.

Actually the Claim holds in a more general setting.
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Let X be a Banach space, K = (BX∗ , weak
∗), f ∈ X∗∗. Then

f is of 1th Baire class ⇐⇒ f |K is of 1th Baire class.

Subcalim: Let X be a subspace of Y and G ∈ X∗∗ ⊆ Y ∗∗. If G is of 1th
Baire class in Y ∗∗ then G is of 1th Baire class in X∗∗.

Indeed, assuming ‖G‖ = 1. If there exists (bn)n ⊆ Y such that bn
n→∞−→ G

weak∗ (or pointwise). We show that

d(BX , co{bN , bN+1, . . .}) = 0, ∀N ∈ ω,

or it is the same to say that we can choose (xn)n ⊆ X and bn convex combi-
nation of bn’s such that

‖xn − bn‖ −→ 0.

Indeed, since bn −→ G weakly∗ (on Y ∗), then

xn −→ G weakly∗ (on Y ∗) and for Hahn-Banach

xn −→ G weakly∗ (on X∗).

If there exists N ∈ ω such that d(BX , co{bN , bN+1, . . .}) > 0, by the
Hahn-Banach separation

∃f ∈ Y ∗ : sup
x∈BX

f(x) < inf
j≥N

f(bj).

By Goldstein’s theorem

|G(f)| ≤ sup
x∈BX

|f(x)| < inf
j≥N

f(bj) ≤ lim
j→∞

f(bj) = G(f)

Now, suppose f ∈ C(X)∗∗ is such that f |K is of 1th Baire class.

Let us denote by suppµ = {x ∈ X : |µ|(U) > 0 ∀U open neighborhood of x}
with µ ∈M(X). For S ⊆ X let us denote by

P(S) = {µ ∈M(X) : ‖µ‖ = 1, suppµ ⊆ S}.

Then, P(S) is a weak∗ closed of K.

Suppose f is not of 1th Baire class on (C(X)∗, weak∗). We want to show
that ∃µ ∈M(X) such that

f |P(suppµ) has no point of continuity in P(suppµ).

Let us consider
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Pd(S) the set of all purely atomic member of P(S). Notice that it is
weak∗ dense in P(S);

Pµ(S) the set of all µ-continuous members of P(S).

If either Y = Pd(S) or Y = Pµ(S) then Y is convex and

‖f‖∞ = sup
ν∈Y
|
∫
f dµ| ∀f ∈ C(S).

Obvious X ↪→ K = BM(X), then f |X is of 1th Baire class.

Let us define g ∈ C(X)∗∗ by

g(µ) =

∫
f(ξ) dµ(ξ), ∀µ ∈M(X).

Of course, g ∈ B1(C(X)∗). Then,

h = f − g ∈ B1(K).

Let us show that h = 0.

By definition of h we have that h(µ) = 0 for all µ ∈ Pd(X).

If h 6= 0, then ∃ν ∈ P(X) : h(ν) 6= 0 (we can suppose h(ν) > 0). By the
Radon-Nikodym’s theorem, we have that

Pν(X) = L1(ν)

Then
h|Pν(X) is a bounded linear functional on Pν(X).

By Riesz representation’s theorem, there exists a bounded Borel measurable
function φ such that

h(λ) =

∫
φ dλ ∀λ ∈ Pν(X)

In particular h(ν) =
∫
φ dν > 0. Which implies∫

φ+ dν > 0

Let c > 0 such that ν(E) > 0 where E = {ξ : φ(ξ) ≥ c}. It follows that

if λ ∈ P(X) : λ(X \ E) = 0⇒
∫
φ dλ =

∫
E

φ dλ ≥ c.
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Let us define µ ∈ P(X) as

µ(B) =
ν(B ∩ E)

ν(E)
.

Then h(λ) ≥ c for all λ ∈ Pµ(X).

Let S = suppµ. Then

h ≥ c on Pµ(X) (which is weak∗-dense in P(X)), and

h = 0 on Pd(X) (which is weak∗-dense in P(X))

⇒ h|P(S) has no point of continuity in P(S). But P(S) ⊆ K and h|K ∈
B1(K). Namely a contradiction.

Proof. of (1)⇒ (b)

F ⊆ B1(X) is relatively compact.

IfX is compact, by Lemma 1.24, T (F ) ⊆ bd−B1(X) is relatively compact.

If X is not compact, let (fα) ⊆ F be a net such that fα −→ f , c =
supα |fα| and µ ∈M(X).

By Ulam’s theorem, given ε > 0 ∃K ⊆ X compact : |µ|(X \K) < ε.

Therefore, the restriction map B1(X) −→ B1(K) is continuous (easy!).
Then F |K is relatively compact in B1(K). By all considerations above∫

K

fα dµ −→
∫
K

f dµ.

Consequently,

lim sup
α
|
∫

(fα − f) dµ| ≤ lim sup
α

∫
X\K
|fα − f | dµ ≤ 2cε.

Since ε > 0 was arbitrary, we have (b).

Definition 1.25. A topological space (X, θ) is called Cech-complete if it can
be considered as a Gδ subset of a compact Hausdorff space; i.e., there exists
a compact Hausdorff space Z and a countable family of open (An)n in Z so
that X =

⋂
nAn.

Remark 1.26. (i) Any locally compact Hausdorff space is Chec-complete
(being open in its one-point compactification);

(ii) any complete metric space is Cech-complete (being Gδ in its Cech-Stone
compactification).
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Before to enunciate the main result of this section, we shall need a bunch
of lemmas

Lemma 1.27. Let X be a Cech-complete space and A a family of pairs
(A,B), with A,B ⊆ X are open’s.

Suppose there is Y ⊆ X non empty so that A is weakly dense over Y (i.e.,
∀E0, . . . , En ⊆ X open’s : Ek ∩ Y 6= ∅, k = 0, . . . , n, then ∃(G,H) ∈ A such
that G ∩ Ei ∩ Y 6= ∅, H ∩ Ei ∩ Y 6= ∅ for all i = 0, . . . , n).

Then there is (Gn, Hn)n ⊆ A and a compact set K ⊆ X such that

K ∩
⋂
n∈I

Gn ∩
⋂

n∈ω\I

Hn 6= ∅ ∀I ⊆ ω.

Proof. By hypothesis, there is a compact Hausdorff space Z and (An)n open
subsets in Z such that X =

⋂
n∈ω An.

Let

B = {(G,H) : G,H ⊆ Z open’s, (G ∩X,H ∩X) ∈ A}.

We have that B is weakly dense over Y .

Claim: There exist {(Gn, Hn) : n ∈ ω} and open sets CP,Q in Z such
that

(i) CP,Q is defined for pairs (P,Q) which is a partition of {0, . . . , n}, for
some n ∈ ω, and CP,Q is a non empty open set in Z such that

CP,Q ∩ Y 6= ∅ and

CP,Q ⊆ An ∩
⋂
n∈P Gn ∩

⋂
n∈QHn.

(ii) If P ⊆ P ′ and Q ⊆ Q′, then CP ′,Q′ ⊆ CP,Q.

As Y is non empty, by hypothesis there is (G0, H0) ∈ B such that

G0 ∩ Y 6= ∅ H0 ∩ Y 6= ∅.

Choose a non empty open sets C{0},∅, C∅,{0} in Z such that

C{0},∅ ∩ Y 6= ∅ C∅,{0} ∩ Y 6= ∅.

and
C{0},∅ ⊆ G0 ∩ A0, C∅,{0} ⊆ H0 ∩ A0.

Suppose that Gi, Hi have been chosen for all i ≤ n and CP,Q has been found
for each partition (P,Q) of {0, . . . , n}.
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Each CP,Q is a non empty open set in Z such that CP,Q ∩ Y 6= ∅. As B is
weakly dense over Y , ∃(Gn+1, Hn+1) ∈ B :

Gn+1 ∩ CP,Q ∩ Y 6= ∅, Hn+1 ∩ CP,Q ∩ Y 6= ∅,

for every partition (P,Q) of {0, . . . , n}. Now, for every partition (P,Q) of
{0, . . . , n} choose CP∪{n+1},Q and CP,Q∪{n+1} two open sets such that

CP∪{n+1},Q ∩ Y 6= ∅, CP,Q∪{n+1} ∩ Y 6= ∅

and
CP∪{n+1},Q ⊆ Gn+1 ∩ An+1, CP,Q∪{n+1} ⊆ Hn+1 ∩ An+1.

Let us define

K =
⋂
n∈ω

⋃
{CP,Q : (P,Q) is a partition of {0, . . . , n}}.

Then K is closed in Z and then compact. For I ⊆ ω, let

Pn = {i ∈ I : i ≤ n} and Qn = {i 6∈ I : i ≤ n},

(Pn, Qn) is a partition of {0, . . . , n}. Since Z is compact

∅ 6=
⋂
n∈ω

CPn,Qn ⊆ K ∩
⋂
n∈I

Gn ∩
⋂

n∈ω\I

Hn.

Finally, as CP,Q ⊆ An for each partition (P,Q) of {0, . . . , n}, we get

K ⊆ X.

Lemma 1.28. Let X be a regular Hausdorff space which is sequentially com-
pact and such that

(C) if A ⊆ X, x ∈ A, there exists a countable set A0 ⊆ A : x ∈ A0.

Let (xn)n be a sequence in X and (In)n be a decreasing sequence of infinite
subsets of ω such that

(xi)i∈In have a common cluster point x.

Then there is an infinite set I ⊆ ω: I \ In is finite, for all n ∈ ω, and x is a
cluster point of (xi)i∈I .
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Proof. Let

F = {lim
i∈I

xi : I is an infinite set, lim
i∈I

xi exists and I \ In is finite ∀n ∈ ω}.

Claim: x ∈ F .

For a neighborhood U of x, let J = {i ∈ ω : xi ∈ U}. Then J ∩ In is a
infinite set.

As (In)n is decreasing, there is an infinite K ⊆ J : K \ In is finite ∀n ∈ ω.
Now, X is sequentially compact. Therefore, there is an infinite I ⊆ K such
that

z = lim
i∈I

xi

exists.

We have z ∈ F ∩ U . Since X is regular, x ∈ F .

By hypothesis (C), there is (zm)m ⊆ F such that x ∈ {zm : m ∈ ω}.
Every

zm = lim
i∈Jm

xi

where Jm is infinite: Jm \ In is finite ∀n ∈ ω.

Let I =
⋃
n∈ω(In ∩ Jn). Then

I \ In is finite, and Jn \ I is finite, ∀n ∈ ω.

Follows that zm is a cluster point of (xi)i. But the set of cluster points of a
sequence is always closed. Thus, x is a cluster point of (xi)i∈I .

Lemma 1.29. Let X be a Polish space, (xn)n a sequence in Cp(X):

(i) {xn : n ∈ ω} is relatively compact in B1(X);

(ii) 0 is a cluster point of (xn)n in the pointwise topology.

Let W ⊆ X be a non empty closed set and ε > 0. Then there is a non empty
relatively open U ⊆ W and an infinite J ⊆ ω:

(a) 0 is a cluster point of (xi)i∈J ;

(b) lim supi∈J |xi(t)| ≤ 2ε for all t ∈ U .

Proof. ∀I ⊆ ω infinite, let

A(I) = {cluster points of (xi)i∈I} ⊆ B1(X).
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Suppose the Lemma fails. If

Gi = {t ∈ X : |xi(t)| < ε}, Hi = {t ∈ X : |xi(t)| > 2ε},

let
A = {(Gi, Hi) : i ∈ ω}.

Claim: A is weakly dense over W .

Indeed, let E0, . . . , En ⊆ X open sets with Ei ∩W 6= ∅, i = 0, . . . , n.

Let si ∈ Ei ∩W , i = 0, . . . , n and

I = {i ∈ ω : |xi(sr)| < ε, ∀r ≤ n}.

Then, by (ii) above, 0 ∈ A(I). Let

Jr = {i ∈ I : |xi(t)| ≤ 2ε, ∀t ∈ Er ∩W}.

By our hypothesis, 0 6∈ A(Jr) for any r ≤ n. Since

A(
⋃
r≤n

Jr) =
⋃
i≤n

A(Jr),

it follows that I 6=
⋃
n≥r Jr. If i is any point of I \

⋃
r≤n Jr, we have

Gi ∩ Er ∩W 6= ∅ (as i ∈ I) Hi ∩ Er ∩W 6= ∅ (as i 6∈ Jr).

By Lemma 1.27, there exists K ⊆ X compact such that

K ∩
⋂
n∈I

Gn ∩
⋂

n∈ω\I

Hn 6= ∅, ∀I ⊆ ω.

In particular, there is a sequence (yn)n in {xi, i ∈ ω} such that, for every
I ⊆ ω

{t ∈ K : |yn(t)| < ε, ∀n ∈ I, |yn(t)| > 2ε ∀n ∈ ω \ I} 6= ∅.

It follows that (|yn|)n can have no convergent subsequence (as well as (yn)n).
But (yn)n is a sequence in {xi : i ∈ ω} which is relatively compact. By
Theorem 1.22, it is relatively sequentially compact in B1(X). A contradiction.

Lemma 1.30. Let X be a Polish space, (xn)n be a sequence in Cp(X) such
that

(i) {xn : n ∈ ω} is relatively compact in B1(X);
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(ii) 0 is a cluster point of (xn)n.

Then there is an infinite set I ⊆ ω such that

lim sup
i∈I

|xi(t)| ≤ ε, ∀t ∈ X

and 0 is a cluster point of (xi)i∈I .

Proof. For each I ⊆ ω, let

U(I) = int{t : lim sup
i∈I

|xi(t)| ≤ ε}

and A(I) the set of all cluster points of (xi)i∈I .

Note that, if I \ J is finite ⇒ U(I) ⊇ U(J).

Let (Vk)k be a base of X and let us start with I0 = ω. Given Ik such that
0 ∈ A(Ik). Then, if there is an infinite I ⊆ Ik: 0 ∈ A(I) and Vk ⊆ U(I), take
Ik+1 = I. Otherwise choose Ik+1 = Ik.

Therefore, the sequence (Ik)k is decreasing: 0 ∈ A(Ik) for all k ∈ ω.

By Lemma 1.28 for the set {xi, i ∈ ω} there is an infinite I ⊆ ω such
that

0 ∈ A(I) and I \ Ik is finite ∀k ∈ ω.

Fix J ⊆ I infinite such that 0 ∈ A(J). Then, U(J) ⊇ U(I).

If U(J) 6= U(I), there should exists k ∈ ω such that Vk ⊆ U(J) but
Vk * U(I).

Since J \ Ik is finite, it follows that J ∩ Ik is infinite in Ik: 0 ∈ A(J ∩ Ik)
and Vk ⊆ U(J ∩ Ik) (for construction of Ik).

Therefore, Vk ⊆ U(Ik+1). But in this situation I \ Ik+1 has to be finite, so
that

Vk ⊆ U(Ik+1) ⊆ U(I),

which contradicts the assumption above.

What we have is:

(a) U(J) = U(I) ∀J ⊆ I : 0 ∈ A(J).

Claim: U(I) = X.

Suppose not. Let W ⊆ X\U(I) be a non empty closed set. By the Lemma
1.29 applied to (xi)i∈I there exists J ⊆ I: 0 ∈ A(J) and

lim sup
i∈J

|xi(t)| ≤ ε, ∀t ∈ U, where U is some open of W.
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Thus
lim sup
i∈J

|xi(t)| ≤ ε, ∀t ∈ U ∪ U(I)

and
U(J) ⊆ int[U ∪ U(I)] 6= U(I).

Which contradicts (a) above.

Corollary 1.31. Let X be a Polish space, (xn)n be a sequence in Cp(X) such
that

(i) (xn)n is relatively compact;

(ii) 0 is a cluster point of (xn)n.

Then, there is a subsequence of (xn)n converging to 0.

Proof. By Lemma 1.30, for ε = 1
2k
∃Ik ⊆ ω, k ∈ ω so that

lim sup
i∈Ik

|xi(t)| ≤
1

2k
, ∀t ∈ X, k ∈ ω.

Notice that we can always choose (Ik)k decreasing. Therefore, let us consider
I ⊆ ω: I \ Ik is finite ∀k ∈ ω. that implies

lim
i∈I

xi = 0.

Here we are ready to enunciate the main result

Theorem 1.32. (Bourgain-Fremlin-Talagrand)
If X is a Polish space, then B1(X) is angelic.

Proof. Actually, Theorem 1.22 says us that every relatively countably com-
pact is relatively compact in B1(X).

We need to show the other condition of angelicity.

Let us consider A ⊆ B1(X) a relatively compact, x ∈ A. By Theorem
1.22(a), there is a sequence (xn)n ⊆ A such that x is a cluster point of (xn)n.

Let us define
ϕ : X −→ Rω

given by
ϕ(t)(0) = x(t)

ϕ(t)(n+ 1) = xn(t),
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for all t ∈ X and n ∈ ω.

1. ϕ is a Borel map.

It is enough to show that, if ni, . . . nk ∈ ω, then

ϕ−1({f ∈ Rω : |f(ni)| < σ, i = 1, . . . , k}

is Borel.

But this set coincides with

{t ∈ X : |ϕ(t)(ni)| < σ, i = 1, . . . , k} =
k⋂
i=1

{t ∈ X : |xni−1| < σ}.

Since each xn set in B1(X), we have that {t ∈ X : |xni−1| < σ} is a Gδ set
(the inverse imageof an open set through a 1th Baire class function is a Gδ).
Therefore, ϕ is Borel.

2. Let us consider {(x, y) : ϕ(x) = y} ⊆ X × Rω. Letting

h(x, y) = |y − ϕ(x)|

we have that h is a Borel map. Since

{(x, y) : ϕ(x) = y} = h−1(0)

we have that L = {(x, y) : ϕ(x) = y} is Borel in X × Rω.

Let us denote by
P : X × Rω −→ Rω

the second projection. Since Y = ϕ(X) coincides with P (L), we have that Y
is an analytic set. From what we have seen in the Tertulia seminar [5], there
must exists a polish space Z and a continuous surjection

ψ : Z −→ Y = φ(X) ⊆ Rω.

Set
y(u) = u(0)

yn(u) = u(n+ 1),

as elements of RY .

We see that y is a cluster point of (yn)n in RY and every subsequence
of (yn)n has a convergent subsequence (this because A is relatively sequen-
tially compact in B1(X)), then every subsequence of (xn)n has a convergent
subsequence).
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Let
z = y ◦ ψ
zn = yn ◦ ψ

as element of RZ . Therefore, z is a cluster point of (zn)n in RZ . Notice that
(zn)n ⊆ Cp(Z) (since each yn is continuous projection coordinate and ψ is
continuous). Moreover every subsequence of (zn)n has a convergent extract.
By Rosenthal’s theorem (Theorem 1.22), {zn, n ∈ ω} is relatively compact
in B1(Z). We also have z ∈ Cp(Z). Let us apply Corollary 1.31 to (zn − z)n
to get a subsequence (zn)n∈I convergent to z. By construction, first we have

lim
n∈I

yn = y

and secondly
lim
n∈I

xn = x

as required.

Let us give another characterization of 1th Baire class function in the
same spirit of the Baire characterization theorem.

Lemma 1.33. (Talagrand)
Let X be a complete metric space, x ∈ RX . Then x ∈ B1(X) if and only if
x|K ∈ B1(K), for every compact K ⊆ X.

Proof. Of course, one way of it is trivial. All we need to show is that if
x|K ∈ B1(X) for every compact K ⊆ X, then x ∈ B1(X).

By Baire characterization theorem (see Theorem 1.9), it is enough to
show that for every closed M ⊆ X, f |M has a point of continuity relative to
M . For α, β ∈ R with α < β, let us denote

S(α) = {t ∈M : x(t) ≤ α}, T (β) = {t ∈M : x(t) ≥ β}.

Therefore, it is enough to show that whenever α < β,

intS(α) ∩ intT (β) = ∅,

or it is the same to say that: x ∈ B1(X) if and only if for every closed closed
set M ⊆ X and α < β,

one of M ∩ S(α), M ∩ T (β) is not equal to M.

Suppose x 6∈ B1(X). Then there is a non empty closed set M ⊆ X, α < β
reals, so that

S(α), T (β) are dense in M

By induction, we can choose a sequence of finite sets An ⊆ S(α)∪T (β) such
that
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(i) A0 6= ∅;

(ii) An An+1, ∀n ∈ ω;

(iii) ∀t ∈ An+1, ∃s ∈ An such that d(t, s) ≤ 1
2n

;

(iv) ∀s ∈ An, ∃t ∈ An+1 such that d(t, s) ≤ 1
2n

and |x(s)− x(t)| ≥ β − α.

Since X is a complete metric space, then

K =
⋃
n∈ω

An

is compact (because it is complete and totally bounded).

Hence K ∩S(α), K ∩T (β) are dense in K. That implies x|K 6∈ B1(K). A
contradiction.

Lemma 1.34. (Talagrand)
Let X be a complete metric space. Then

x ∈ B1(X) if and only if for every non empty open U ⊆ X, ε > 0 there
is a non empty open V ⊆ U such that diam(x(V )) ≤ ε.

Proof. If x ∈ B1(X), we already know that the points of continuity of x is
dense in X. Therefore, if we fix t ∈ U and consider the continuity condition,
we have that the condition is trivially satisfies.

Suppose we start with the condition, but x 6∈ B1(X).

Thus, we can consider E,F ⊆ R closed and disjoint such that

if U = intx−1(E) ∩ intx−1(F ) 6= ∅

then U ∩ x−1(E) and U ∩ x−1(F ) are dense in U .

By our condition, we can choose a sequence (Vn)n of non empty open sets
in X such that

(i) V0 ⊆ U ;

(ii) Vn ⊆ Vn−1, for all n ∈ ω;

(iii) diam(x(Vn)) ≤ ε, for all n ∈ ω;

Now,
Vn ∩ x−1(E) 6= ∅, Vn ∩ x−1(F ) 6= ∅.

Let sn ∈ Vn ∩x−1(E) and tn ∈ Vn ∩x−1(F ) for all n ∈ ω. Therefore, (x(sn))n
and (x(tn))n are two Cauchy sequences in R which must have a common limit
in E ∩ F (which contradicts that E and F are disjoints).
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Let us fix some notation.

For any sets A,X and S ⊆ A×X, let

π1(S) = {x ∈ A : ∃t ∈ X (x, t) ∈ S},

S(x) = {t ∈ X : (x, t) ∈ S},

S−1(t) = {x ∈ A : (x, t) ∈ S}.

Let Σ and B two σ-algebras of subsets of A and X respectively. Σ
∧
⊗ B

will denote the σ-algebra generated by {E × F : E ∈ Σ, F ∈ B}.

Lemma 1.35. Let (A,Σ, µ) be a complete probability space and X be a com-
pact metric space. Let B be the σ-algebra of Borel sets in X. Then

π1(S) ∈ Σ, ∀S ∈ Σ
∧
⊗ B.

Proof. Of course, we can write S in the form

S = ∪{∩nEφ|n × Fφ|n : φ ∈ ωω},

where φ|n = (φ(0), . . . , φ(n)), Eφ|n ∈ Σ and Fφ|n are closed in X.

Without loss in generality, we can assume, as well as we do, that

Eφ|n+1 ⊆ Eφ|n , Fφ|n+1 ⊆ Fφ|n , ∀n ∈ ω.

Therefore,

π1(S) = ∪{π1(∩nEφ|n × Fφ|n) : φ ∈ ωω}
= ∪{∩nπ1(Eφ|n × Fφ|n) : φ ∈ ωω}
= ∪{∩nEφ|n : φ ∈ ωω},

which lies in Σ.

Lemma 1.36. Let (A,Σ, µ) be a complete probability measure and (X, d) be
a compact metric space.

Let S and T subsets of A×X such that

(*) S−1(t), T−1(t) ∈ Σ, for all t ∈ X;

(**) for every x ∈ A and every non empty closed F ⊆ X at least one of the
sets

F ∩ S(x), F ∩ T (x) is not equal to F .
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Then, for any δ > 0 and any non epty open U ⊆ X there is a non empty
open V ⊆ U such that

µ(S−1(s)) + µ(T−1(t)) ≤ 1 + 3δ, ∀s, t ∈ V.

Proof. Let us fix (Vn)n be a base of X.

Case 1. S, T ∈ Σ
∧
⊗ B.

Let us define (Ψξ)ξ<ω1 ⊆ A×X as follows:

Ψ0 = A×X;

for a given ξ < ω1 even, let

Ψξ+1 = {(x, t) : x ∈ A, t ∈ S(x) ∩Ψξ(x)},

Ψξ+2 = {(x, t) : x ∈ A, t ∈ T (x) ∩Ψξ(x)};

and for limit ordinals ξ < ω1 let

Ψξ =
⋂
η<ξ Ψη.

Then we have

(a) Ψξ(x) is closed in X, ∀x ∈ A;

(b) Ψξ ⊆ Ψη, whenever η ≤ ξ < ω1;

(c) Ψξ+2(x) ( Ψξ(x) if Ψξ(x) 6= ∅ (by our hypothesis on S and T ).

Claim 1. Ψξ ∈ Σ
∧
⊗ B.

Of course, for ξ = 0 it is clear.

Suppose the Claim holds for ξ, then

Ψξ+1 = {(x, t) : t ∈ S(x) ∩Ψξ(x)}

=
⋂
k

{(x, t) : either t 6∈ Vk or Vk ∩ S(x) ∩Ψξ(x) 6= ∅}

=
⋂
k

[(A×X \ Vk) ∪ π1(A× Vk ∩ S ∩Ψξ)×X] .

By the previous lemma, we have that Ψξ+1 ∈ Σ
∧
⊗ B. Similarly for Ψξ+2.

Now, for all k ∈ ω, ξ < ω1, let

Ek,ξ = π1 ((A× Vk) ∩ S ∩Ψξ)
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Notice that, for fixed k ∈ ω, (Ek,ξ)ξ<ω1 i a decreasing sequence in Σ.

Since µ is a probability measure,

∃η < ω1 : µ(Ek,ξ) = µ(Ek,η ∀ξ ≥ η.

Set
A1 = A \

⋃
k∈ω

(Ek,η \ Ek,η+2) .

Then µ(A \ A1) = 0. Let us fix x ∈ A1, we have

{k ∈ ω : x ∈ Ek,η+2} = {k ∈ ω : x ∈ Ek,η}.

So

Ψη+1(x) = {t ∈ X : ∀k ∈ ω either t 6∈ Vk or x ∈ Ek,η} = Ψη+3(x).

By (c) we have that Ψη+1(x) = ∅.
What we have is that: there is a countable ordinal η0 = η+1 and A1 ⊆ A

such that
µ(A \ A1) = 0 and Ψη0(x) = ∅, ∀x ∈ A1.

Now, for all n ∈ ω, ξ < ω1, let us define

Φn,ξ = {(x, t) ∈ Ψξ : d(y,Ψξ+1) ≥ 1

2n
}.

Claim 2. Φn,ξ ∈ Σ
∧
⊗ B.

Let (tn)n be a countable dense subset of X. Then,

Φn,ξ = Ψξ \
⋃
{R(α, β, k) : α, β ∈ Q, α + β <

1

2n
, k ∈ ω}

where

R(α, β, k) = {(x, t) : d(t, tk) ≤ β, Nα(tk) ∩Ψξ+1(x) 6= ∅}
= π1 (A×Nα(tk) ∩Ψξ+1)×Nβ(tk).

and
Nα(tk) = {t ∈ X : d(t, tk) ≤ α}.

Therefore, Φn,ξ ∈ Σ
∧
⊗ B, for all n ∈ ω and ξ < ω1.

Moreover, each Φn,ξ is closed.

If η < ξ then d(Φn,ξ(x),Φn,η(x)) ≥ 1
2n

for all n ∈ ω, x ∈ A.

Also, we have
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Ψξ+1(x) is closed;⋃
n∈ω Φn,ξ = Ψξ \Ψξ+1, ξ < ω1;⋃
n∈ω,η∈ξ Φn,η = (A×X) \Ψξ, ξ < ω1.

Now, let us consider

Φn =
⋃
ξ<η0

Φn,ξ ∈ Σ
∧
⊗ B,

remembering that η0 was a countable ordinal.

Let us define

h(x, t) =

{
1, if (x, t) ∈ Ψξ \Ψξ+1, where ξ is odd, ξ ≤ η0;
0, otherwise.

Therefore, h is Σ
∧
⊗ B measurable. We know that, if x ∈ A1, t ∈ X Kipping

in mind the definition of η0, t 6∈ Ψη0(x).

Then, there exists some ξ < η0: t ∈ Ψξ(x) \Ψξ+1(x) (by hypothesis).

If ξ is even, h(x, t) = 0 and t 6∈ S(x) ∩Ψξ(x), so (x, t) 6∈ S.

If ξ is odd, then h(x, t) = 1 and t 6∈ T (x) ∩Ψξ(x), so (x, t) 6∈ T .

What we have is, ∀x ∈ A1, t ∈ X

χS(x, t) ≤ h(x, t), χT (x, t) ≤ 1− h(x, t).

By definition of h, for any x ∈ A, n ∈ ω, ξ < ω1, h(x, t) is constant for
t ∈ Φn,ξ(x).

Therefore, if we denote by hx(t) = h(x, t), hx is continuous on Φn(x) =⋃
ξ<η0

Φn,ξ(x) (because for fixed n, x, Φn,ξ(x) are isolated).

Let B = ballC(X). Let us define

Λn = {(x, z) ∈ A×B : z(t) = h(x, t), ∀t ∈ Φn(x)}.

By Tietze’s theorem (i.e., every continuous function on a closed subset of a
normed space can be extendible over the whole space), Λn(x) is never empty
and clearly it is closed (here, for once, we are giving on B the uniform norm
topology, so B is a Polish space).

Claim 3.
Λn : A −→ F(B)

is a multifunction measurable; i.e., for every open V subset of B {x ∈ A :
Λn(x) ∩ V 6= ∅} ∈ Σ.
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To show that, it is enough that {x ∈ A : ρ(z,Λn(x)) ≤ ε} is measurable,
for all z ∈ B, ε > 0 (where ρ is a metric on B).

But,

{x : ρ(z,Λn(x)) ≤ ε} = {x ∈ A : |z(t)− h(x, t)| ≤ ε, ∀t ∈ Φn(x)}
= A \ π1 (Φn ∩ {(x, t) : |z(t)− h(x, t)| > ε}) ∈ Σ,

because h is Σ
∧
⊗ B measurable and Φn ∈ Σ

∧
⊗ B.

By the Kuratowski-Ryll-Nardzewski’s theorem (see [5]),

∃λ : A −→ B measurable function such that

λn(x) ∈ Λn(x), ∀x ∈ A.

Set fn(x, t) = λn(x)(t) : A×X −→ R.

Then fn is measurable in the first variable and continuous in the second
one; also, |fn(x, t)| ≤ 1, ∀x ∈ A, t ∈ X.

By construction, fn = h on Φn. Since X =
⋃
n∈ω Φn(x), for x ∈ A1, we

have
h(x, t) = lim

n
fn(x, t), ∀x ∈ A1, t ∈ X.

Set

zn(t) =

∫
fn(x, t) dµ(x).

Then zn ∈ Cp(X) and

lim
n
zn(t) =

∫
h(x, t) dµ(x), ∀t ∈ X;

that is because ∀t ∈ X, limn fn(x, t) = h(x, t) for almost x ∈ A.

Let us consider U the open of the enunciate of the Lemma. Therefore,

U =
⋃
n∈ω

{t ∈ U : |zm(t)− zn(t)| ≤ δ, ∀m ≥ n}.

By Baire’s theorem (see Theorem 1.4), there is n0 ∈ ω such that

G = int{t ∈ U : |zm(t)− zn(t)| ≤ δ, ∀m ≥ n} is not empty.

Let V ⊆ G be an open set such that |zn(s)− zn(t)| ≤ δ ∀s, t ∈ V .

Therefore,
|zm(s)− zn(t)| ≤ δ, ∀s, t ∈ V, m ≥ n.
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Since, for x ∈ A1, s, t ∈ V

χS(x, s) + χT (x, t) ≤ h(x, s) + 1− h(x, t),

we have

µ(S−1(s)) + µ(T−1(t)) ≤ 1 +

∫
h(x, s) dµ(x)−

∫
h(x, t) dµ(x)

= 1 + lim
m

[zm(s)− zm(t)] ≤ 1 + 3δ.

Case 2. S, T ⊆ A×X general sets.

Suppose no such V can be found. Let I = {k ∈ ω : Vk ∩ U 6= ∅}.
Then we can consider, for each k ∈ I, points sk, tk ∈ Vk ∩ U such that

µ(S−1(sk)) + µ(T−1(tk)) > 1 + 3δ.

Let

S0 =
⋃
k∈I

S−1(sk)× {sk}, T0 =
⋃
k∈I

T−1(tk)× {tk}.

Then T0, S0 ∈ Σ
∧
⊗ B, S0 ⊆ S and T0 ⊆ T .

By hypothesis and Case 1., ∃F ⊆ X, x ∈ A such that

F = F ∩ S0(x) = F ∩ T0(x).

If V ⊆ U is open, then

sup
s∈V

µ(S−1
0 (s)) + sup

t∈V
µ(T−1

0 (t)) > 1 + 3δ,

which clearly contradicts Case 1.

Proposition 1.37. Let (A,Σ, µ) be a complete probability space and X a
complete metric space. Let

f : A×X −→ R

be a bounded function, maesurable in the first variable and of 1th Baire class
in the second one.

Then,

z(t) =

∫
f(x, t) dµ(x) ∈ B1(X).
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Proof. By Lemma 1.33, we may assume that X is a compact metric space.

By Lemma 1.34, we need to show that: ∀ε > 0 and non empty open
U ⊆ X there is a non empty open V ⊆ U :

diam(z(V )) ≤ ε.

Since f is bounded, we can assume 0 ≤ f(x, t) ≤ 1, ∀x ∈ A, t ∈ X.

Let n ∈ ω be such that 3n+ 1 ≤ εn2. Let us set

Sr = {(x, t) : f(x, t) ≤ r

n
}, Tr = {(x, t) : f(x, t) ≥ r

n
}.

For each r ∈ ω, Sr, Tr+1 satisfy the hypothesis of Lemma 1.36; indeed, ∀x ∈
A, the map t 7−→ f(x, t) ∈ B1(X) (see the proof of Lemma 1.33).

So, by induction, we can choose non empty open sets (Vr)r such that

(i) V0 = U ;

(ii) Vr+1 ⊆ Vr;

(iii) µ(S−1
r (s)) + µ(T−1

r+1(t)) ≤ 1 + 1
n

for all s, t ∈ Vr+1, 0 ≤ r ≤ n.

Now, s, t ∈ Vn+1 then

(1)
∑
r≤n

1

n
µ(T−1

r+1(t)) ≥
∫
f(x, t)− 1

n
dµ(x) = z(t)− 1

n
,

and

(2)
∑
r≤n

1

n
[1− µ(S−1

r (s))] ≤ z(s) +
1

n
.

To see (1), note that, since T−1
r−1(t) ⊆ T−1

r (t) and A = T−1
0 (t), we have

f(x, t)− 1

n
≤ 0, ∀x ∈ T−1

0 (t) \ T−1
1 (t),

f(x, t)− 1

n
≤ 1

n
, ∀x ∈ T−1

1 (t) \ T−1
2 (t),

and so on, and since

T−1
r (t) = (T−1

r (t) \ T−1
r+1(t)) ∪ T−1

r+1(t),

we get ∫
f(x, t)− 1

n
dµ(x) =

∫
T−1
0 (t)\T−1

1 (t)

f(x, t)− 1

n
dµ(x) + . . .

∫
T−1
n (t)\T−1

n+1(t)

f(x, t)− 1

n
dµ(x)
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≤ 0 +
1

n
µ(T−1

1 (t) \ T−1
2 (t)) +

2

n
µ(T−1

2 (t) \ T−1
3 (t)) + . . .+ µ(T−1

n (t) \ T−1
n+1(t))

=
1

n
µ(T−1

1 (t)) + . . .+
1

n
µ(T−1

n+1(t))

=
∑
r≤n

µ(T−1
r+1(t)).

The reader can figure out (2) similarly.

Therefore,

z(t)− z(s) ≤
∑
r≤n

1

n
µ(T−1

r+1(t)) +
1

n
−
∑
r≤n

1

n
[1− µ(S−1

r (s))] +
1

n

=
2

n
+

1

n

∑
r≤n

[µ(T−1
r+1(t)) + µ(S−1

r (s))− 1]

(by (iii)) ≤ 2

n
+

1

n
(n+ 1)

1

n
≤ ε.

Theorem 1.38. (Talagrand)
Let X be a complete metric space, A ⊆ B1(X) a compact uniformly bounded
set.

Then, co(A) is relatively compact in B1(X).

Proof. As in the Rosenthal’s theorem 1.22, we have that co(A) is compact in
RX .

Then, it is enough to show that co(A) ⊆ B1(X).

Let z ∈ co(A). As A is compact in the locally convex Hausdorff space
RX , there is a Radon measure µ on A such that

f(z) =

∫
A

f(x) dµ(x), ∀f ∈ (RX)∗.

In particular

z(t) =

∫
A

x(t) dµ(x), ∀t ∈ X.

But, the function h : A×X −→ R defined by

h(x, t) = x(t), ∀x ∈ A, t ∈ X

satisfies the condition of Proposition 1.37. Hence,

z(t) =

∫
h(x, t) dµ(x) ∈ B1(X).
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1.0.2 Summertime

In this section, we are going to show how the space Cp(X) and B1(X) play
a central rule in the Banach space theory.

Let us start with a classical result due to H. P. Rosenthal, A. Pelczynski
and R. Haydon. Originally, the following result was proved using combinato-
rial tools. The following proof give a more topological character.

Theorem 1.39. Let B be a separable Banach space. Then the following are
equivalent

0. B contains a copy of `1 (i.e., `1 embeds in B);

1. There is a bounded sequence in B with no weak-Cauchy subsequence;

2. There is a bounded sequence in B∗∗ with no weak∗-convergent subse-
quence;

3. there is an element of B∗∗ which is not 1th Baire class function on
(BX∗ , weak

∗);

4. There is an element of B∗∗ which is not weak∗-limit of a sequence of
B;

5. The cardinality of B∗∗ is greater than the cardinality of B;

6. There is a bounded weak∗ strongly countably compact of B∗∗ which is not
weak∗ compact (strongly countably compact means that every separable
subset has compact closure);

7. there is a bounded weak∗ closed convex subset of B∗ which is not the
norm closure convex hull of the set of its extreme points;

8. L1[0, 1] embeds in B∗;

9. `1(Γ) embeds in B∗ for some uncountable set Γ;

10. C([0, 1]) is a continuous linear image of B.

Proof. Since B is a separable Banach space, we have that X = (BB∗ , weak
∗)

is a Polish space. Let us consider

F = {f |X f ∈ B∗∗, ‖f‖ ≤ 1}.

Therefore, F is a pointwise compact family of real-valued function on X.
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(2)⇒ (0) Let us suppose thatB∗∗ have a bounded sequence with no weak∗

convergent subsequence. Then F fails (3) of Theorem 1.22. In particular, that
implies F * B1(X). Let (gn)n ⊆ B∗∗, ‖gn‖ ≤ 1 be such that: (gn)n has no
weak∗ convergent subsequence. Letting fn = gn|X , n ∈ ω. Then (fn)n ⊆ F
with no pointwise convergent subsequence. By Theorem 1.21, there exists
(fnk)k subsequence of (fn)n, L ⊆ X and f : X −→ R such that

fnk −→ f pointwise

f satisfies the Discontinuity Criterion.

By the classical Goldstine ’s theorem

(∆) f is in the pointwise closure of {g|L g ∈ ball(B)}.

Since the elements of ball(B) are continuous on L, by Proposition 1.19,

`1 ↪→ B.

(1)⇒ (0) If gn)n ⊆ B has no weak Cauchy subsequence, then (gn)n satisfies
(∆) above. Therefore (gn)n has a subsequence equivalent to the usual `1-basis.

Therefore (0)− (1)− (2) are equivalents.

(6) ⇒ (0) Let us suppose (6) holds. Let F defined as above. Then F
contains a strongly countable compact which is non compact Y . So Y fails
the condition (a) of Theorem 1.22

⇒ F * B1(X) ⇒ `1 ↪→ B.

(0) ⇒ (6) If `1 embeds in B, then `∗∗1 is weak∗ isomorphic to a subspace of
B∗∗, and βN (the Cech-Stone compactification of N) is homeomorphic to a
weak∗ compact of `∗∗1 .

Let us consider a family (Mα)α<ω1 of infinite subsets of N such that

Mα ∩ (N \Mβ) is infinite (for α < β < ω1)

Mβ ⊆a Mα

For any α < ω1, let

Kα = Mα
βN ∩ (N \Mα).

Then (Kα)α<ω1 is a family of clopen in βN \ N with

Kβ ⊆ Kα, α < β < ω1.

Therefore, ⋃
α<ω1

(βN \Kα) ∩ (βN \ N)

is a strongly countably compact which is non compact of βN.
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Before continuing to prove the all equivalences above, we need to recall
the following

Definition 1.40. Let C be a convex subset of a topological vector space. A
point x0 ∈ C is said to be an extreme point if x0 = λx + (1 − λ)y, for some
x, y ∈ C and λ ∈]0, 1[, then necessarily x0 = x = y. In the sequel, we shall
denote by extC the set of all extreme points of C.

Proposition 1.41. If X is a metrizable compact convex subset of a topolog-
ical vector space, then the extreme points of X form a Gδ set

Proof. Suppose that the topology of X is given by the metric d. For each
n ∈ ω, let us define

Fn = {x ∈ X : x =
1

2
y +

1

2
z, y, z ∈ X, d(y, z) ≥ 1

n
}.

It is clear that

Fn is closed, n ∈ ω;

x ∈ X is not an extreme point if and only if ∃n0 ∈ ω : x ∈ Fn0 .

Then
X \ extX =

⋃
n∈ω

Fn,

which, of course, implies that extX is a Gδ in X.

Corollary 1.42. If X is a complete metric space, C ⊆ X is a compact
convex set, then

extC is a Baire space.

Let us recall from Proposition 1.19 that:

If (xn)n is a uniformly bounded sequence of real valued functions on a set
S, δ, r ∈ R, with δ > 0, and

An = {ξ ∈ S : xn(ξ) > δ + r}

Bn = {ξ ∈ S : xn(ξ) < r}.

Assuming that ∀F1, F2 ⊆ ω finite and disjoints, we have

V (F1, F2) =
⋂
n∈F1

An ∩
⋂
n∈F2

Bn 6= ∅.

Then (xn)n is equivalent (in the sup-norm) to the usual `1-basis.
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Lemma 1.43. Let B be a Banach space, S be a non empty bounded subset of
B∗, ϕ ∈ B∗∗, r, δ ∈ R with δ > 0. Assume that for each weak∗-open U ⊆ B∗

with S ∩ U 6= ∅, 
∃ξ, η ∈ coweak∗(S ∩ U) :
ϕ(ξ) > δ + r,
ϕ(η) < r.

(1.1)

Then B contains a sequence equivalent to the usual `1-basis.

Proof. By assumption (1.1) and Golstine’s theorem, ∃x1 ∈ B with ‖x1‖ =
‖ϕ‖ such that

ξ(x1) > δ + r, η(x1) < r.

Since ξ, η ∈ coweak∗(S), we have

A1 = {s ∈ S : s(x1) > δ + r} 6= ∅

B1 = {s ∈ S : s(x1) < r} 6= ∅.

Suppose, by induction, ∃x1, . . . , xn ∈ B has been defined such that

V (F1, F2) 6= ∅, for every pair of disjoint sets F1, F2 ⊆ ω.

Since V (F1, F2) is a weak∗ open which intersects S, by assumption, there
must exist ξ(F1, F2), η(F1, F2) ∈ coweak∗(V (F1, F2)):

ϕ(ξ(F1, F2)) > δ + r

ϕ(ηξ(F1, F2)) < r.

By Goldstine’s theorem ∃xn+1 ∈ B, ‖xn+1‖ = ‖ϕ‖ :

ξ(F1, F2)(xn+1) > δ + r

η(F1, F2)(xn+1) < r

for every F1, F2 ∈ FD(ω).

Therefore, we have

An+1 ∩ V (F1, F2) 6= ∅, Bn+1 ∩ V (F1, F2) 6= ∅, ∀F1, F2 ∈ FD(ω).

Therefore, the lemma follows by Proposition 1.19.

Proposition 1.44. Let B be a Banach space such that `1 6↪→ B.

Then, every weak∗ compact convex subset of B∗ is the norm closure convex
hull of its extreme points.
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Proof. Let C be a weak∗ compact convex subset of B∗ and suppose that

C 6= norm closure convex hull of extC = co‖·‖(extC).

By Hahn-Banach’s theorem, there exists ϕ ∈ B∗∗ such that

1 = inf{ϕ(ξ) : ξ ∈ C} > sup{ϕ(ξ) : ξ ∈ extC}.

By Bishop-Phelps’s theorem, we can, as well, assume that

F = {ξ ∈ C : ϕ(ξ) = 1} 6= ∅.

So, F is a norm closed face of C; let K = F
weak∗

and E = extK.

Notice that F ∩ E = ∅.
Indeed, if ξ ∈ F ∩ E, then ξ ∈ extC and so ϕ(ξ) < 1. But, E is a Baire

space (see [1] or Appendix 3), then there must exists n0 ∈ ω such that

En0 = E ∩ coweak∗{ξ ∈ E : ϕ(ξ) < 1− 1

n0

}

contains a non empty weak∗ open S of E.

We claim that the lemma holds for S, r = 1− 1
n0

, δ = 1
2n0

.

Let V is a weak∗ open such that V ∩ S 6= ∅. Since V ∩ S is a weak∗ open
of E, then ∃x ∈ B,α ∈ R such that if W = {ξ ∈ B∗ : ξ(x) > α} then

∅ 6= W ∩ E ⊆ V ∩ S.

Keeping in mind that K = F
weak∗

, there must exists ξ0 ∈ W ∩ F .

If ξ0 ∈ coweak
∗
(W ∩ E), we put ξ = ξ0. Otherwise, there are

ξ1 ∈ coweak
∗
(W ∩ E), ξ2 ∈ coweak

∗
(E \W )

so that
ξ0 = λξ1 + (1− λ)ξ2, λ ∈ [0, 1].

Now, ξ2(x) ≤ α, while ξ0(x) > α. Therefore λ > 0. Since F is a face, ξ1 ∈ F .
Then,

ϕ(ξ1) = 1, ξ1 ∈ coweak
∗
(W ∩ E).

On the other hand, {η ∈ S : ϕ(η) < 1 − 1
n0
} is weak∗ dense in S, so V ∩ S

contains some η such that

ϕ(η) < 1− 1

n0

.
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Proposition 1.45. Let B be a Banach space containing a subspace isomor-
phic to `1. Then there is a weak∗ compact subset T of B∗ such that

coweak
∗
T 6= co‖·‖T.

Proof. Let

j : `1 ↪→ B

be a linear homeomorphism embedding and

u : `1 −→ C([0, 1])

be a quotient map.

Denote by δ(t) (t ∈ [0, 1]) the Dirac measure (or point mass measure).
Then

coweak
∗{δ(t) : t ∈ [0, 1]}

consists of all probability measures in M [0, 1], while

co‖·‖{δ(t) : t ∈ [0, 1]}

consists just of all atomic probability measures.

Let us consider

S = u∗({δ(t) : t ∈ [0, 1]}) ⊆ `∞.

Then S is weak∗ compact convex so that

coweak
∗
S 6= co‖·‖S.

Finally, let T ⊆ B∗ be a weak∗ compact such that

j∗(T ) = S.

Then

j∗(coweak
∗
T ) = coweak

∗
S

and

j∗(co‖·‖T ) = co‖·‖S.

That implies

coweak
∗
T 6= co‖·‖T.
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Note that if Γ is a uncountable abstract set, c0(Γ) contains no copy of
`1, but it is not weak∗ sequentially dense in `∞(Γ). Therefore, Theorem 1.39
above it is not true for a non separable case.

Definition 1.46. Let K be a compact Hausdorff space. A function ϕ : K −→
R is said to be universally measurable if ϕ is µ- measurable for every regular
Borel measure µ on K. By Lusin’s theorem, that means there exists, for each
measure µ and ε > 0, a compact L ⊆ K such that

|µ|(K \ L) < ε, ϕ|L is continuous.

Definition 1.47. If K is a compact convex space, ϕ : K −→ R satisfies the
barycentric calculus if ϕ is universally measurable and∫

K

ϕdµ = ϕ(rµ)

for every probability measure µ on K.

rµ is called the resultant of µ, defined to be the unique point of K such
that ∫

K

fdµ = f(rµ), for every continuous affine function f on K.

Proposition 1.48. Let K be a compact convex set, ϕ : K −→ R be a bounded
affine function. TFAE

(i) ϕ satisfies the barycentric calculus;

(ii) for every probability measure µ on K, every ε > 0 there exists a compact
convex L ⊆ K with

µ(L) > 1− ε and ϕ|L is continuous

(iii) for every r, δ ∈ R, δ > 0, and every probability measure µ on K there
is a closed convex L ⊆ K with µ(L) > 0 which is contained either in

A = {ξ ∈ K : ϕ(ξ) > r}

or in

Bδ = {ξ ∈ K : ϕ(ξ) < r + δ}.
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Proof. (i)⇒ (ii) Since ϕ is universally measurable, given µ and ε > 0 there
exists S ⊆ K compact:

µ(S) > 1− ε and ϕ|S is continuous.

Let L = co‖·‖S.

Let P(S) be the set of all probability measures in M(S) equipped with
the weak∗ topology, and let

r : P(S) −→ L

be the barycentre map. r is a continuous surjection. By hypothesis

ϕ ◦ r(µ) =

∫
S

ϕdµ.

Since ϕ is continuous on S, ϕ ◦ r is continuous on P(S)

⇒ ϕ is continuous on L.

(ii)⇒ (iii) Trivial.

(iii) ⇒ (i) Let C be a convex subset of K, µ a positive measure on K.
Define

µc(C) = sup{µ(L) : L compact convex, L ⊆ C}.
Such a measure is usually called convex inner measure of µ.

Claim: For each probability measure µ, δ > 0, then

µc(A) + µc(Bδ) ≥ 1.

If not, we can choose increasing sequences of compact sets Ln ⊆ A, Mn ⊆ Bδ,
with:

µc(A) = sup
n
µ(Ln) = µ(

⋃
n

Ln), µc(Bδ) = sup
n
µ(Mn) = µ(

⋃
n

Mn).

Let us define
ν = µ|K\⋃n(Ln∪Mn).

If ν is not zero, by hypothesis there exists L compact : ν(L) > 0 and

either L ⊆ A or L ⊆ Bδ.

In case L ⊆ A, let L′n = co(L∪Ln) ⊆ A. Then, L′n is a compact convex such
that

µ(L′n) ≥ µ(Ln) + ν(L).
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In such case, µ(L′n) > µ(A) for sufficiently large n ∈ ω. Namely, a contradic-
tion.

Since K \ A =
⋂
n∈ω B 1

n

⇒ µc(A) + µc(K \ A) = 1.

In particular, A is measurable and so ϕ is µ-measurable.

Let us denote by A(K) the Banach space of all continuous affine real-
valued functions on K. Let us consider the natural embedding

K ↪→ ballA(K)∗.

Therefore, we can identify ϕ as an element of A(K)∗∗.

Given ε > 0, let us consider N ∈ ω such that ‖ϕ‖ ≤ Nε.

For all −N ≤ n ≤ N let

Cn = {ξ ∈ K : nεϕ(ξ) < (n+ 1)ε}.

If µ is a probability measure, we have already shown that

N∑
n=−N

µc(Cn) = 1,

so there are compact convex sets Ln ⊆ Cn such that

N∑
−N

µ(Ln) ≥ 1− ε

‖ϕ‖
(1.2)

whenever µ(Ln) 6= 0. Let

µn =
1

µ(Ln)
· µ|Ln and ξn = rµn,

otherwise, if µ(Ln) = 0, we choose an arbitrary ξn ∈ Ln ⊆ Cn.

Therefore

‖rµ−
N∑
−N

µ(Ln)ξn‖ = ‖rµ−
N∑
−N

µ(Ln)rµn‖

= sup
‖f‖≤1
f∈A(K)

∣∣∣∣∣f(rµ)−
N∑
−N

µ(Ln)f(rµn)

∣∣∣∣∣
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= sup
‖f‖≤1
f∈A(K)

∣∣∣∣∣
∫
K

fdµ−
N∑
−N

µ(Ln)

∫
Ln

fd
µ

µ(Ln)

∣∣∣∣∣
(Ln are disjoints) = sup

‖f‖≤1
f∈A(K)

∣∣∣∣∣
∫
K

fdµ−
∫
∪N−NLn

fdµ

∣∣∣∣∣
= sup
‖f‖≤1
f∈A(K)

∣∣∣∣∣
∫
K\∪N−NLn

fdµ

∣∣∣∣∣
≤ µ(K \ ∪N−NLn)

= µ(K)−
N∑

n=−N

µ(Ln)

by (1.2) = 1−
N∑

n=−N

µ(Ln)

≤ ε

‖ϕ‖

Therefore ∣∣∣∣∣ϕ(rµ)−
N∑

n=−N

µ(Ln)ϕ(ξn)

∣∣∣∣∣ ≤ ε. (1.3)

Since ξn ∈ Cn, we get∣∣∣∣∣ϕ(rµ)−
N∑

n=−N

µ(Ln)nε

∣∣∣∣∣ ≤
∣∣∣∣∣ϕ(rµ)−

N∑
n=−N

µ(Ln)ϕ(ξn)

∣∣∣∣∣
+

∣∣∣∣∣
N∑

n=−N

µ(Ln)ϕ(ξn)−
N∑

n=−N

µ(Ln)nε

∣∣∣∣∣
≤ ε+

∣∣∣∣∣
N∑

n=−N

µ(Ln)(ϕ(ξn − nε)

∣∣∣∣∣
= ε+

N∑
n=−N

µ(Ln)(ϕ(ξn − nε)

≤ ε+ µ(
N⋃

n=−N

Ln)

≤ 2ε.
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On the other hand, by (1.3)∣∣∣∣∣
∫
K

ϕdµ−
N∑

n=−N

∫
Ln

ϕdµ

∣∣∣∣∣ ≤ ε

⇒

∣∣∣∣∣
∫
K

ϕdµ−
N∑

n=−N

µ(Ln) · nε

∣∣∣∣∣ ≤ 2ε.

Thus ∣∣∣∣ϕ(rµ)−
∫
K

ϕdµ

∣∣∣∣ ≤ 4ε.

Theorem 1.49. (R. Haydon)
Let B be a Banach space and K = (ballB∗, weak∗). TFAE

(i) B contains no copy of `1;

(ii) every element of B∗∗ is universally measurable as functions on K;

(iii) every element of B∗∗ satisfies the barycentric calculus on K.

Proof. (i) ⇒ (ii) Let µ be a probability measure on K, ϕ ∈ B∗∗, r, δ ∈ R
with δ > 0. Let S = suppµ . By Lemma 1.43 there is a weak∗ open V with
S ∩ V 6= ∅ so that

either coweak
∗
S ∩ V ⊆ {ξ ∈ K : ϕ(ξ) > r}

or coweak
∗
S ∩ V ⊆ {ξ ∈ K : ϕ(ξ) < r + δ}.

We have that µ(S∩V ) > 0. Thus (iii) of the previous proposition holds with
L = coweak

∗
S ∩ V .

(iii)⇒ (ii) Trivial.

(ii)⇒ (i) Let us suppose that B contains a copy of `1, let

j : `1 ↪→ B

be an embedding with ‖j‖ = 1. Let λ be the product measure on {−1, 1}ω
with λ ∈ `∞. Finally, let µ be a measure on K such that j∗µ = λ.

Since `∞ = C(βN), then βN ↪→ `∗∞.

Choose χ ∈ βN \ N and consider ϕ = j∗∗χ.

It is known that χ is not λ- measurable. Therefore, ϕ is not µ-measurable.
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Appendix

2.0.3 Appendix 1

Theorem 2.1. Let (X, d) be a metric space and µ be a Borel probability
measure on X. Then given a Borel set B ⊆ X and ε > 0 there is a closed
set F ⊆ B and an open set G ⊇ B such that

µ(G \ F ) < ε. (2.1)

Proof. Suppose C ⊆ X is a non empty closed set. Let f(x) = d(x,C). Then,
f is continuous and C = {x ∈ X : f(x) = 0}. Let

Cn = {x ∈ X : f(x) <
1

n
}.

For each n ∈ ω, Cn is an open set with Cn ⊇ C and such that µ(Cn)↘ µ(C).
Therefore, every closed satisfies (2.1).

Let B the family of Borel set which satisfy (2.1).

First notice that, if (Bn)n ⊆ B then
⋃
nBn ∈ B.

Indeed, fixing ε > 0 we can pick Fn ⊆ Bn a closed, Gn ⊇ Bn an open
such that µ(Gn \ Fn) < ε

2n+1 . Let us consider n0 such that

µ(
⋃
n

Fn \
n0⋃
k=1

Fk) < ε.

Therefore we have,
⋃n0

k=1 Fk is a closed set,
⋃
n∈ω Gn is open with

n0⋃
k=1

Fk ⊆
⋃
n∈ω

Bn ⊆
⋃
n∈ω

Gn,

51
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and

µ(
⋃
n∈ω

Gn \
n0⋃
k=1

Fk) < ε.

So, B contains the smallest σ-algebra generated by open sets.

Theorem 2.2. (Ulam)
Let X be a Polish space and µ be a Borel probability measure on X. Then
given a Borel set B, ε > 0, there is a compact set K ⊆ B such that

µ(B \K) < ε.

Proof. It is enough to show that there is a compact set K such that

µ(K) > 1− ε.

Since X is separable, for each n ∈ ω there is a family (Bk(n))k of balls of X
such that

X =
⋃
k

Bk(n), diam(Bk(n)) ≤ 1

n
.

Without loose in generality, we can assume that the centers of (Bk(n))k
coincide with those of (Bk(m))k. Then

µ(X \
k(1)⋃
i=1

Bi(1)) <
ε

2
,

µ(X \
k(2)⋃
i=1

Bi(2)) <
ε

22
,

and so on.

Conclusion: ⋂
n∈ω

(B1(n) ∪ . . . ∪Bk(n)(n))

is totally bounded, and

K =
⋂
n∈ω

(B1(n) ∪ . . . ∪Bk(n)(n))

is compact. By construction

µ(K) > 1− ε.
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2.0.4 Appendix 2

Let E be a locally convex space and let X ⊆ E be a compact convex subset.

Definition 2.3. A real valued function h defined on X is called affine if

h(λx+ (1− λ)y) = λh(x) + (1− λ)h(y), ∀x, y ∈ X, λ ∈ [0, 1].

Remark 2.4. Notice that not all all affine function is of the form x 7−→
f(x) + r, for some f ∈ E∗, r ∈ R.

Indeed, consider E = (`2, weak) and X == {(xn)n ∈ E : |xn| ≤ 1
2n
}.

Define

f : X −→ R by f(x) =
∑
n

xn

Then, f is affine with f(0) = 0. But the is no point y ∈ `2 such that f(x) =
〈x, y〉.

Consider A the uniformly closed subspace of C(X) consisting of all real
valued affine functions on X, and let

M = E∗|X + R.

The remark above says us that M is a proper subspace of A

Proposition 2.5. The subspace M is uniformly dense in the closed subspace
A of all affine continuous functions on X.

Proof. Suppose g ∈ A, ε > 0. Let us consider the following subset of E × R

J1 = {(x, r) : r = g(x)}

J2 = {(x, r) : r = g(x) + ε}.

Those sets are compact, convex , non empty and disjoints.

Using Hahn-Banach separation to 0 and J2 − J1, the exists a continuous
linear functional L on E × R and λ ∈ R such that

supL(J1) < λ < inf L(J2).

Let f be the function on E defined by the equation L(x, f(x)) = λ.

It is clear that f is affine and continuous. Moreover,

g(x) < f(x) < g(x) + ε ∀x ∈ X,
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and f ∈M . Notice that, the fact that f is affine on E, implies that f = h+r,
h ∈ E∗, r ∈ R. Therefore,

f̃ = f |X = h|X + r ⇒ f̃ ∈M.

Let us say some more about f :

For each x ∈ X there exists unique rx ∈ R such that L(x, rx) = λ.

Indeed, suppose there are r1, r2 ∈ R so that

L(x, r1) = λ = L(x, r2).

Then, L(0, r1 − r2) = 0, or (r1 − r2)L(0, 1) = 0, which implies r1 = r2.

That shows f is well defined. Moreover f is affine. Indeed,

L(tx+ (1− t)y, tf(x) + (1− t)f(y)) = tL(x, f(x)) + (1− t)L(y, f(y)) = λ

⇒ f(tx+ (1− t)y) = f(x)) + (1− t)L(y, f(y).

Finally, let us shows that f is continuous.

If xn → x, and |f(xn)− f(x)| > δ > 0. Since

L(xn, f(xn)) = λ = L(x, f(x))

we get

0 = L(xn − x, f(xn)− f(x)) = (f(xn)− f(x))L(
xn − x

f(xn)− f(x)
, 1).

Since ( 1
f(xn)−f(x)

)n is a bounded sequence in R, we have

xn − x
f(xn)− f(x)

−→ 0.

Therefore, since L is continuous

L(
xn − x

f(xn)− f(x)
, 1) −→ 1.

Thus f(xn)→ f(x). Namely a contradiction.
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2.0.5 Appendix 3

Let E be a topological space and α, β two players, with β the first to move.
The game is:

each player chooses a non empty set V in E lying inn the opponent’s
previously chosen set.

The space E is called α-favorable if α has a winning tactic no matter what
β chooses, i.e. α can choose sets Vn such that

⋂
n Vn 6= ∅. A mathematical

definition can be

Definition 2.6. Let (E, θ) be a topological space. We say that E is α-
favorable iff there is a map f : θ −→ θ such that

f(U) ⊆ U for all U ∈ θ,

for any sequence V1, V3, . . . , V2n+1, . . . so that

V1 ⊇ f(V1) ⊇ V3 ⊇ f(V3) ⊇ . . .

we have ⋂
n∈ω

Vn 6= ∅.

Example 2.7. (i) Every complete metric space is α-favorable.

Indeed, define a function f such that

diamf(U) ≤ 1

2
inf{1, diamU}

and
f(U) ⊆ f(U) ⊆ U.

Then given V1, V3, . . . , V2n+1, . . . : V1 ⊇ f(V1) ⊇ V3 ⊇ f(V3) ⊇ . . .
consider xn ∈ Vn, n ∈ ω. Then (xn)n is Cauchy and the limit

x = lim
n
xn ∈

⋂
n

Vn.

(ii) Every locally compact Hausdorff space is α-favorable.

In such case, choose f(U) with f(U) compact and f(U) ⊆ U . Then by
Cantor’s theorem, if Vn are as in the definition, we get⋂

n∈ω

Vn 6= ∅.
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Theorem 2.8. Every α-favorable topological space is a Baire space.

Proof. Suppose E is not Baire, then there are closed nowhere dense sets Fn
such that

int(
⋃
n∈ω

Fn) ⊇ V

for some non empty open set V .

Let V1 = V and V2n+1 = V2n−1 ∩ (E \ Fn).

Then there is no f giving a winning strategy since

V ∩ (E \
⋃
n

Fn) = ∅.

Lemma 2.9. Let E be a Hausdorff TVS, X ⊆ E convex and A ⊆ X a convex
linearly compact (i.e., any line intersecting A does so in a closed segment).

Suppose X \ A = B is convex. Then if ext(A) 6= ∅ we have

ext(A) ∩ ext(X) 6= ∅.

Proof. Let a ∈ ext(A) and suppose ext(A) ∩ ext(X) = ∅. Therefore a 6∈
ext(X). Then

a =
1

2
x+

1

2
y, for some x 6= y in X.

Since A,B are convex, we can suppose that x ∈ A, y ∈ B. Let ` = line{x, y}.
By hypothesis ` ∩ A = [a, b], b ∈ A (because a ∈ ext(A)).

Claim: b ∈ ext(X).

Suppose not, then b = 1
2
b1+ 1

2
b2, b1 6= b2 with b1 ∈ A. Let `′ = line{b1, b2}.

By construction, b1 6∈ ` (since ` ∩ A = [a, b]).

For c1, c2 ∈ co{b1, b2, y} lying in separate open half space y − b, let

g(c1, c2) = λc1 + (1− λ)c2

so that g(c1, c2) ∈ span(y, b).

Subclaim: We can choose b2 ∈ A.

Suppose not, the we can find zn ∈]b, b2] ∩ B such that zn → b. Then
∀z ∈ [b1, y[

g(z, zn)→ b.

If z ∈ [b1, y[ then g(z, zn) ∈ B (since B is convex).
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Then [b1, y[⊆ A. Since A is linearly compact, we get [b1, y[⊆ A. Namely
a contradiction, because y ∈ B.

Then we can assume b2 ∈ A. Let ci be the end point of the segment
[bi, y] ∩ A, i = 1, 2. Then ci 6= y, i = 1, 2. Therefore we can choose

din ∈ [bi, y] ∩B

such that
din −→ ci, i = 1, 2.

Let en = g(d1
n, d

2
n) ∈ B.

Then en → g(c1, c2) ∈ A. It follows that g(c1, c2) = a. Or a 6∈ ext(A). A
contradiction.

Theorem 2.10. (Choquet)
Let E be a Hausdorff LCS and X ⊆ E be a convex compact subset.

Then ext(X) is α-favorable. In particular, ext(X) is a Baire space.

Proof. Given an open set A ⊆ ext(X), and a ∈ A we can choose a closed
slide V of X such that

V ∩ ext(X) ⊆ A.

Slide means a set of type: ∃x∗ ∈ E∗, V = X ∩ {x ∈ E : x∗(x) ≤ r} for some
r ∈ R.

Define
ϕ(A, a) = V ∩ ext(X)

Of course, we can assume that ϕ(A1, a1) ⊆ ϕ(A2, a2) whenever A1 ⊆ A2.

If V1, V2, . . . is a decreasing sequence of closed slides of X corresponding
to A1, A2, . . ., since X is compact we get⋂

n

Vn 6= .

But
⋂
n Vn is convex, closed set and X \

⋂
n Vn is convex in X. Then, by the

previous lemma, we have ⋂
n

Vn ∩ ex(X) 6= ∅

⇒
⋂
n

An 6= ∅.
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